[Python爬虫] scrapy爬虫系列 <一>.安装及入门介绍
前面介绍了很多Selenium基于自动测试的Python爬虫程序,主要利用它的xpath语句,通过分析网页DOM树结构进行爬取内容,同时可以结合Phantomjs模拟浏览器进行鼠标或键盘操作。但是,更为广泛使用的Python爬虫框架是——Scrapy爬虫。这是一篇在Windows系统下介绍 Scrapy爬虫安装及入门介绍的相关文章。
官方 Scrapy :http://scrapy.org/
官方英文文档:http://doc.scrapy.org/en/latest/index.html
官方中文文档:https://scrapy-chs.readthedocs.org/zh_CN/0.24/index.html
一. 安装过程
本文主要讲述Windows下的安装过程,首先我的Python是2.7.8版本。
主要通过Python的PIP语句进行安装:
pip install scrapy
安装PIP参考:http://blog.csdn.net/eastmount/article/details/47785123
通过 pip list outdated 命令查看软件最新版本,表示PIP安装成功。
然后,输入 pip install scrapy 命令进行安装。
安装成功后,通过cmd调用 scrapy 指令查看,表示安装成功。
如果过程中存在如下图所示错误"no module named win32api",则需要下载安装win32,选择2.7.8版本。地址为:http://sourceforge.net/projects/pywin32/files/
此时,scrapy安装成功,可以进行第二步"第一个scrapy爬虫实现"了~
正如xifeijian大神所说:“作为Python爱好者,如果不知道easy_install或者pip中的任何一个的话,那么......”。easy_insall的作用和perl中的cpan,ruby中的gem类似,都提供了在线一键安装模块的傻瓜方便方式,而pip是easy_install的改进版,提供更好的提示信息,删除package等功能。老版本的python中只有easy_install,没有pip。常见的具体用法如下:
easy_install的用法: 1) 安装一个包 $ easy_install <package_name> $ easy_install "<package_name>==<version>" 2) 升级一个包 $ easy_install -U "<package_name>>=<version>" pip的用法 1) 安装一个包 $ pip install <package_name> $ pip install <package_name>==<version> 2) 升级一个包 (如果不提供version号,升级到最新版本) $ pip install --upgrade <package_name>>=<version> 3)删除一个包 $ pip uninstall <package_name>
二. 第一个scrapy爬虫程序实现
官网介绍:
Scrapy是一个为了爬取网站数据,提取结构性数据而编写的应用框架。可以应用在包括数据挖掘,信息处理或存储历史数据等一系列的程序中。其最初是为了 页面抓取 (更确切来说, 网络抓取 )所设计的, 也可以应用在获取API所返回的数据(例如 Amazon Associates Web Services ) 或者通用的网络爬虫。
An open source and collaborative framework for extracting the data you need from websites. In a fast, simple, yet extensible way.
下面是参考官网在windows下实现的第一个scrapy爬虫程序:
打开Python IDLE,创建myspider.py文件,代码如下:
1 import scrapy 2 3 class BlogSpider(scrapy.Spider): 4 name = 'blogspider' 5 start_urls = ['http://blog.scrapinghub.com'] 6 7 def parse(self, response): 8 for url in response.css('ul li a::attr("href")').re(r'.*/\d\d\d\d/\d\d/$'): 9 yield scrapy.Request(response.urljoin(url), self.parse_titles) 10 11 def parse_titles(self, response): 12 for post_title in response.css('div.entries > ul > li a::text').extract(): 13 yield {'title': post_title}
如果此时你试图点击Run运行程序或在IDLE中输入 scrapy runspider myspider.py,似乎返回如下错误:
此时我怀疑Windows下需要调用cmd运行程序,还是强烈推荐在Linux下学习使用Python相关编程知识。调用cd去到文件所在目录:
cd G:\software\Program software\Python\python insert\scrapy project
然后在运行程序,结果输出如下所示:
此时,程序能够运行成功了,不论结果如何、代码如何,总算在Windows下跑起来了。下面第三部分,我再简单介绍如何调用Scrapy爬虫进行一个入门相关的爬取~
三. Scrapy入门介绍
入门介绍参考:初窥Scrapy 和 Scrapy入门教程
给大家简单举个例子,使用maxliaops的Scrapy爬虫爬取腾讯的职位招聘信息。
代码下载:https://github.com/maxliaops/scrapy-itzhaopin
源文链接:http://blog.csdn.net/HanTangSongMing/article/details/24454453
目标网址为:http://hr.tencent.com/position.php
Windows下Ctrl+R调用CMD命令行。输入命令如下:
1.chcp 936 unknown encoding: cp65001异常时,需要将编码(UTF-8)修改为 简体中文(GBK) 2.cd G:\software\Program software\Python\python insert\scrapy project 去到安装Scrapy目录下 3.cd scrapy-itzhaopin-master\itzhaopin 再次去到下载的文件itzhaopin目录下 4.scrapy crawl tencent 运行代码启动这个Spider,进行下载
最后运行会在scrapy-itzhaopin-master\itzhaopin文件夹下生产一个tencent.json的结果。数据量很大,下图只展示部分日期是2015-11-07的数据,如下所示:
其中代码itzhaopin项目的结果图如下所示:参考原文作者博客
├── itzhaopin │ ├── itzhaopin │ │ ├── __init__.py │ │ ├── items.py │ │ ├── pipelines.py │ │ ├── settings.py │ │ └── spiders │ │ └── __init__.py │ └── scrapy.cfg scrapy.cfg: 项目配置文件 items.py: 需要提取的数据结构定义文件 pipelines.py:管道定义,用来对items里面提取的数据做进一步处理,如保存等 settings.py: 爬虫配置文件 spiders: 放置spider的目录
核心的几个py文件内容如下,详见github:
1.items.py:定义我们要抓取的数据
1 # Define here the models for your scraped items 2 # 3 # See documentation in: 4 # http://doc.scrapy.org/en/latest/topics/items.html 5 6 from scrapy.item import Item, Field 7 class TencentItem(Item): 8 name = Field() # 职位名称 9 catalog = Field() # 职位类别 10 workLocation = Field() # 工作地点 11 recruitNumber = Field() # 招聘人数 12 detailLink = Field() # 职位详情页链接 13 publishTime = Field() # 发布时间
2.spiders文件夹中tencent_spider.py文件:实现Spider
Spider是一个继承自scrapy.contrib.spiders.CrawlSpider的Python类,有三个必需的定义的成员
name: 名字,这个spider的标识
start_urls:一个url列表,spider从这些网页开始抓取
parse():一个方法,当start_urls里面的网页抓取下来之后需要调用这个方法解析网页内容,同时需要返回下一个需要抓取的网页,或者返回items列表
1 import re 2 import json 3 4 from scrapy.selector import Selector 5 try: 6 from scrapy.spider import Spider 7 except: 8 from scrapy.spider import BaseSpider as Spider 9 from scrapy.utils.response import get_base_url 10 from scrapy.utils.url import urljoin_rfc 11 from scrapy.contrib.spiders import CrawlSpider, Rule 12 from scrapy.contrib.linkextractors.sgml import SgmlLinkExtractor as sle 13 14 15 from itzhaopin.items import * 16 from itzhaopin.misc.log import * 17 18 19 class TencentSpider(CrawlSpider): 20 name = "tencent" 21 allowed_domains = ["tencent.com"] 22 start_urls = [ 23 "http://hr.tencent.com/position.php" 24 ] 25 rules = [ 26 Rule(sle(allow=("/position.php\?&start=\d{,4}#a")), follow=True, callback='parse_item') 27 ] 28 29 def parse_item(self, response): 30 items = [] 31 sel = Selector(response) 32 base_url = get_base_url(response) 33 sites_even = sel.css('table.tablelist tr.even') 34 for site in sites_even: 35 item = TencentItem() 36 item['name'] = site.css('.l.square a').xpath('text()').extract()[0] 37 relative_url = site.css('.l.square a').xpath('@href').extract()[0] 38 item['detailLink'] = urljoin_rfc(base_url, relative_url) 39 item['catalog'] = site.css('tr > td:nth-child(2)::text').extract()[0] 40 item['workLocation'] = site.css('tr > td:nth-child(4)::text').extract()[0] 41 item['recruitNumber'] = site.css('tr > td:nth-child(3)::text').extract()[0] 42 item['publishTime'] = site.css('tr > td:nth-child(5)::text').extract()[0] 43 items.append(item) 44 #print repr(item).decode("unicode-escape") + '\n' 45 46 sites_odd = sel.css('table.tablelist tr.odd') 47 for site in sites_odd: 48 item = TencentItem() 49 item['name'] = site.css('.l.square a').xpath('text()').extract()[0] 50 relative_url = site.css('.l.square a').xpath('@href').extract()[0] 51 item['detailLink'] = urljoin_rfc(base_url, relative_url) 52 item['catalog'] = site.css('tr > td:nth-child(2)::text').extract()[0] 53 item['workLocation'] = site.css('tr > td:nth-child(4)::text').extract()[0] 54 item['recruitNumber'] = site.css('tr > td:nth-child(3)::text').extract()[0] 55 item['publishTime'] = site.css('tr > td:nth-child(5)::text').extract()[0] 56 items.append(item) 57 #print repr(item).decode("unicode-escape") + '\n' 58 59 info('parsed ' + str(response)) 60 return items 61 62 63 def _process_request(self, request): 64 info('process ' + str(request)) 65 return request
3.pipelines.py:实现PipeLine
PipeLine用来对Spider返回的Item列表进行保存操作,可以写入到文件、或者数据库等。PipeLine只有一个需要实现的方法:process_item,例如我们将Item保存到JSON格式文件中:
1 # Define your item pipelines here 2 # 3 # Don't forget to add your pipeline to the ITEM_PIPELINES setting 4 # See: http://doc.scrapy.org/en/latest/topics/item-pipeline.html 5 6 from scrapy import signals 7 import json 8 import codecs 9 10 class JsonWithEncodingTencentPipeline(object): 11 12 def __init__(self): 13 self.file = codecs.open('tencent.json', 'w', encoding='utf-8') 14 15 def process_item(self, item, spider): 16 line = json.dumps(dict(item), ensure_ascii=False) + "\n" 17 self.file.write(line) 18 return item 19 20 def spider_closed(self, spider): 21 self.file.close( 22 )
4.settings.py:设置文件
1 # Scrapy settings for itzhaopin project 2 # 3 # For simplicity, this file contains only the most important settings by 4 # default. All the other settings are documented here: 5 # 6 # http://doc.scrapy.org/en/latest/topics/settings.html 7 # 8 9 BOT_NAME = 'itzhaopin' 10 11 SPIDER_MODULES = ['itzhaopin.spiders'] 12 NEWSPIDER_MODULE = 'itzhaopin.spiders' 13 14 # Crawl responsibly by identifying yourself (and your website) on the user-agent 15 #USER_AGENT = 'itzhaopin (+http://www.yourdomain.com)' 16 17 ITEM_PIPELINES = { 18 'itzhaopin.pipelines.JsonWithEncodingTencentPipeline': 300, 19 } 20 21 LOG_LEVEL = 'INFO'
看了这个简单的例子后,后面的文章就会根据原文进行一些自定义的爬虫实验了,希望对你有所帮助吧~同时还是感觉Linux下学习这些更适合些。最后推荐两篇文章:
Python爬虫框架Scrapy实战之定向批量获取职位招聘信息
Scrapy研究探索专栏 作者:young-hz
[Python]网络爬虫(12):爬虫框架Scrapy的第一个爬虫示例入门教程
(By:Eastmount 2015-11-08 深夜4点 http://blog.csdn.net/eastmount/)