Ubuntu上使用QT creator运行cuda程序 转载的文章
突发奇想想尝试一下QT界面中使用CUDA加速过的程序,然后查了一下资料,总结一下有以下几点吧
1、CUDA配置全部放在.pro文件中
2、main.cpp为主函数使用g++编译
3、kernel.cu为核函数使用nvcc编译
不多说上代码
以下为main.cpp代码
#include <QtCore/QCoreApplication>
extern "C"
void runCudaPart();
int main(int argc, char *argv[])
{
runCudaPart();
}
以下为kernel.cu代码
// CUDA-C includes
#include <cuda.h>
#include <cuda_runtime.h>
#include <stdio.h>
extern "C"
//Adds two arrays
void runCudaPart();
__global__ void addAry( int * ary1, int * ary2 )
{
int indx = threadIdx.x;
ary1[ indx ] += ary2[ indx ];
}
// Main cuda function
void runCudaPart() {
int ary1[32];
int ary2[32];
int res[32];
for( int i=0 ; i<32 ; i++ )
{
ary1[i] = i;
ary2[i] = 2*i;
res[i]=0;
}
int * d_ary1, *d_ary2;
cudaMalloc((void**)&d_ary1, 32*sizeof(int));
cudaMalloc((void**)&d_ary2, 32*sizeof(int));
cudaMemcpy((void*)d_ary1, (void*)ary1, 32*sizeof(int), cudaMemcpyHostToDevice);
cudaMemcpy((void*)d_ary2, (void*)ary2, 32*sizeof(int), cudaMemcpyHostToDevice);
addAry<<<1,32>>>(d_ary1,d_ary2);
cudaMemcpy((void*)res, (void*)d_ary1, 32*sizeof(int), cudaMemcpyDeviceToHost);
for( int i=0 ; i<32 ; i++ )
printf( "result[%d] = %d\n", i, res[i]);
cudaFree(d_ary1);
cudaFree(d_ary2);
}
以下为配置文件cudaQT.pro
QT += core
QT -= gui
TARGET = cudaQTS
CONFIG += console
CONFIG -= app_bundle
TEMPLATE = app
SOURCES += main.cpp
# This makes the .cu files appear in your project
OTHER_FILES += ./kernel.cu
# CUDA settings <-- may change depending on your system
CUDA_SOURCES += ./kernel.cu
CUDA_SDK = "/usr/local/cuda-7.5/" # Path to cuda SDK install
CUDA_DIR = "/usr/local/cuda-7.5/" # Path to cuda toolkit install
# DO NOT EDIT BEYOND THIS UNLESS YOU KNOW WHAT YOU ARE DOING....
SYSTEM_NAME = ubuntu # Depending on your system either 'Win32', 'x64', or 'Win64'
SYSTEM_TYPE = 64 # '32' or '64', depending on your system
CUDA_ARCH = sm_50 # Type of CUDA architecture, for example 'compute_10', 'compute_11', 'sm_10'
NVCC_OPTIONS = --use_fast_math
# include paths
INCLUDEPATH += $$CUDA_DIR/include
# library directories
QMAKE_LIBDIR += $$CUDA_DIR/lib64/
CUDA_OBJECTS_DIR = ./
# Add the necessary libraries
CUDA_LIBS = -lcuda -lcudart
# The following makes sure all path names (which often include spaces) are put between quotation marks
CUDA_INC = $$join(INCLUDEPATH,'" -I"','-I"','"')
#LIBS += $$join(CUDA_LIBS,'.so ', '', '.so')
LIBS += $$CUDA_LIBS
# Configuration of the Cuda compiler
CONFIG(debug, debug|release) {
# Debug mode
cuda_d.input = CUDA_SOURCES
cuda_d.output = $$CUDA_OBJECTS_DIR/${QMAKE_FILE_BASE}_cuda.o
cuda_d.commands = $$CUDA_DIR/bin/nvcc -D_DEBUG $$NVCC_OPTIONS $$CUDA_INC $$NVCC_LIBS --machine $$SYSTEM_TYPE -arch=$$CUDA_ARCH -c -o ${QMAKE_FILE_OUT} ${QMAKE_FILE_NAME}
cuda_d.dependency_type = TYPE_C
QMAKE_EXTRA_COMPILERS += cuda_d
}
else {
# Release mode
cuda.input = CUDA_SOURCES
cuda.output = $$CUDA_OBJECTS_DIR/${QMAKE_FILE_BASE}_cuda.o
cuda.commands = $$CUDA_DIR/bin/nvcc $$NVCC_OPTIONS $$CUDA_INC $$NVCC_LIBS --machine $$SYSTEM_TYPE -arch=$$CUDA_ARCH -c -o ${QMAKE_FILE_OUT} ${QMAKE_FILE_NAME}
cuda.dependency_type = TYPE_C
QMAKE_EXTRA_COMPILERS += cuda
}
结果图,能编译并运行
后续可以试试把一个大工程塞进来
————————————————
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
原文链接:https://blog.csdn.net/bisheng250/article/details/53611237
1、CUDA配置全部放在.pro文件中
2、main.cpp为主函数使用g++编译
3、kernel.cu为核函数使用nvcc编译
不多说上代码
以下为main.cpp代码
#include <QtCore/QCoreApplication>
extern "C"
void runCudaPart();
int main(int argc, char *argv[])
{
runCudaPart();
}
以下为kernel.cu代码
// CUDA-C includes
#include <cuda.h>
#include <cuda_runtime.h>
#include <stdio.h>
extern "C"
//Adds two arrays
void runCudaPart();
__global__ void addAry( int * ary1, int * ary2 )
{
int indx = threadIdx.x;
ary1[ indx ] += ary2[ indx ];
}
// Main cuda function
void runCudaPart() {
int ary1[32];
int ary2[32];
int res[32];
for( int i=0 ; i<32 ; i++ )
{
ary1[i] = i;
ary2[i] = 2*i;
res[i]=0;
}
int * d_ary1, *d_ary2;
cudaMalloc((void**)&d_ary1, 32*sizeof(int));
cudaMalloc((void**)&d_ary2, 32*sizeof(int));
cudaMemcpy((void*)d_ary1, (void*)ary1, 32*sizeof(int), cudaMemcpyHostToDevice);
cudaMemcpy((void*)d_ary2, (void*)ary2, 32*sizeof(int), cudaMemcpyHostToDevice);
addAry<<<1,32>>>(d_ary1,d_ary2);
cudaMemcpy((void*)res, (void*)d_ary1, 32*sizeof(int), cudaMemcpyDeviceToHost);
for( int i=0 ; i<32 ; i++ )
printf( "result[%d] = %d\n", i, res[i]);
cudaFree(d_ary1);
cudaFree(d_ary2);
}
以下为配置文件cudaQT.pro
QT += core
QT -= gui
TARGET = cudaQTS
CONFIG += console
CONFIG -= app_bundle
TEMPLATE = app
SOURCES += main.cpp
# This makes the .cu files appear in your project
OTHER_FILES += ./kernel.cu
# CUDA settings <-- may change depending on your system
CUDA_SOURCES += ./kernel.cu
CUDA_SDK = "/usr/local/cuda-7.5/" # Path to cuda SDK install
CUDA_DIR = "/usr/local/cuda-7.5/" # Path to cuda toolkit install
# DO NOT EDIT BEYOND THIS UNLESS YOU KNOW WHAT YOU ARE DOING....
SYSTEM_NAME = ubuntu # Depending on your system either 'Win32', 'x64', or 'Win64'
SYSTEM_TYPE = 64 # '32' or '64', depending on your system
CUDA_ARCH = sm_50 # Type of CUDA architecture, for example 'compute_10', 'compute_11', 'sm_10'
NVCC_OPTIONS = --use_fast_math
# include paths
INCLUDEPATH += $$CUDA_DIR/include
# library directories
QMAKE_LIBDIR += $$CUDA_DIR/lib64/
CUDA_OBJECTS_DIR = ./
# Add the necessary libraries
CUDA_LIBS = -lcuda -lcudart
# The following makes sure all path names (which often include spaces) are put between quotation marks
CUDA_INC = $$join(INCLUDEPATH,'" -I"','-I"','"')
#LIBS += $$join(CUDA_LIBS,'.so ', '', '.so')
LIBS += $$CUDA_LIBS
# Configuration of the Cuda compiler
CONFIG(debug, debug|release) {
# Debug mode
cuda_d.input = CUDA_SOURCES
cuda_d.output = $$CUDA_OBJECTS_DIR/${QMAKE_FILE_BASE}_cuda.o
cuda_d.commands = $$CUDA_DIR/bin/nvcc -D_DEBUG $$NVCC_OPTIONS $$CUDA_INC $$NVCC_LIBS --machine $$SYSTEM_TYPE -arch=$$CUDA_ARCH -c -o ${QMAKE_FILE_OUT} ${QMAKE_FILE_NAME}
cuda_d.dependency_type = TYPE_C
QMAKE_EXTRA_COMPILERS += cuda_d
}
else {
# Release mode
cuda.input = CUDA_SOURCES
cuda.output = $$CUDA_OBJECTS_DIR/${QMAKE_FILE_BASE}_cuda.o
cuda.commands = $$CUDA_DIR/bin/nvcc $$NVCC_OPTIONS $$CUDA_INC $$NVCC_LIBS --machine $$SYSTEM_TYPE -arch=$$CUDA_ARCH -c -o ${QMAKE_FILE_OUT} ${QMAKE_FILE_NAME}
cuda.dependency_type = TYPE_C
QMAKE_EXTRA_COMPILERS += cuda
}
结果图,能编译并运行
后续可以试试把一个大工程塞进来
————————————————
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
原文链接:https://blog.csdn.net/bisheng250/article/details/53611237