TCP滑动窗口
TCP协议作为一个可靠的面向流的传输协议,其可靠性和流量控制由滑动窗口协议保证,而拥塞控制则由控制窗口结合一系列的控制算法实现。
一、滑动窗口协议
关于这部分自己不晓得怎么叙述才好,因为理解的部分更多,下面就用自己的理解来介绍下TCP的精髓:滑动窗口协议。
所谓滑动窗口协议,自己理解有两点:1. “窗口”对应的是一段可以被发送者发送的字节序列,其连续的范围称之为“窗口”;2. “滑动”则是指这段“允许发送的范围”是可以随着发送的过程而变化的,方式就是按顺序“滑动”。在引入一个例子来说这个协议之前,我觉得很有必要先了解以下前提:
-1. TCP协议的两端分别为发送者A和接收者B,由于是全双工协议,因此A和B应该分别维护着一个独立的发送缓冲区和接收缓冲区,由于对等性(A发B收和B发A收),我们以A发送B接收的情况作为例子;
-2. 发送窗口是发送缓存中的一部分,是可以被TCP协议发送的那部分,其实应用层需要发送的所有数据都被放进了发送者的发送缓冲区;
-3. 发送窗口中相关的有四个概念:已发送并收到确认的数据(不再发送窗口和发送缓冲区之内)、已发送但未收到确认的数据(位于发送窗口之中)、允许发送但尚未发送的数据以及发送窗口外发送缓冲区内暂时不允许发送的数据;
-4. 每次成功发送数据之后,发送窗口就会在发送缓冲区中按顺序移动,将新的数据包含到窗口中准备发送;
TCP建立连接的初始,B会告诉A自己的接收窗口大小,比如为‘20’:
字节31-50为发送窗口
A发送11个字节后,发送窗口位置不变,B接收到了乱序的数据分组:
只有当A成功发送了数据,即发送的数据得到了B的确认之后,才会移动滑动窗口离开已发送的数据;同时B则确认连续的数据分组,对于乱序的分组则先接收下来,避免网络重复传递:
二、流量控制
流量控制方面主要有两个要点需要掌握。一是TCP利用滑动窗口实现流量控制的机制;二是如何考虑流量控制中的传输效率。
1. 流量控制
所谓流量控制,主要是接收方传递信息给发送方,使其不要发送数据太快,是一种端到端的控制。主要的方式就是返回的ACK中会包含自己的接收窗口的大小,并且利用大小来控制发送方的数据发送:
这里面涉及到一种情况,如果B已经告诉A自己的缓冲区已满,于是A停止发送数据;等待一段时间后,B的缓冲区出现了富余,于是给A发送报文告诉A我的rwnd大小为400,但是这个报文不幸丢失了,于是就出现A等待B的通知||B等待A发送数据的死锁状态。为了处理这种问题,TCP引入了持续计时器(Persistence timer),当A收到对方的零窗口通知时,就启用该计时器,时间到则发送一个1字节的探测报文,对方会在此时回应自身的接收窗口大小,如果结果仍未0,则重设持续计时器,继续等待。
2. 传递效率
一个显而易见的问题是:单个发送字节单个确认,和窗口有一个空余即通知发送方发送一个字节,无疑增加了网络中的许多不必要的报文(请想想为了一个字节数据而添加的40字节头部吧!),所以我们的原则是尽可能一次多发送几个字节,或者窗口空余较多的时候通知发送方一次发送多个字节。对于前者我们广泛使用Nagle算法,即:
*1. 若发送应用进程要把发送的数据逐个字节地送到TCP的发送缓存,则发送方就把第一个数据字节先发送出去,把后面的字节先缓存起来;
*2. 当发送方收到第一个字节的确认后(也得到了网络情况和对方的接收窗口大小),再把缓冲区的剩余字节组成合适大小的报文发送出去;
*3. 当到达的数据已达到发送窗口大小的一半或以达到报文段的最大长度时,就立即发送一个报文段;
对于后者我们往往的做法是让接收方等待一段时间,或者接收方获得足够的空间容纳一个报文段或者等到接受缓存有一半空闲的时候,再通知发送方发送数据。
三、拥塞控制
网络中的链路容量和交换结点中的缓存和处理机都有着工作的极限,当网络的需求超过它们的工作极限时,就出现了拥塞。拥塞控制就是防止过多的数据注入到网络中,这样可以使网络中的路由器或链路不致过载。常用的方法就是:
1. 慢开始、拥塞控制
2. 快重传、快恢复
一切的基础还是慢开始,这种方法的思路是这样的:
-1. 发送方维持一个叫做“拥塞窗口”的变量,该变量和接收端口共同决定了发送者的发送窗口;
-2. 当主机开始发送数据时,避免一下子将大量字节注入到网络,造成或者增加拥塞,选择发送一个1字节的试探报文;
-3. 当收到第一个字节的数据的确认后,就发送2个字节的报文;
-4. 若再次收到2个字节的确认,则发送4个字节,依次递增2的指数级;
-5. 最后会达到一个提前预设的“慢开始门限”,比如24,即一次发送了24个分组,此时遵循下面的条件判定:
*1. cwnd < ssthresh, 继续使用慢开始算法;
*2. cwnd > ssthresh,停止使用慢开始算法,改用拥塞避免算法;
*3. cwnd = ssthresh,既可以使用慢开始算法,也可以使用拥塞避免算法;
-6. 所谓拥塞避免算法就是:每经过一个往返时间RTT就把发送方的拥塞窗口+1,即让拥塞窗口缓慢地增大,按照线性规律增长;
-7. 当出现网络拥塞,比如丢包时,将慢开始门限设为原先的一半,然后将cwnd设为1,执行慢开始算法(较低的起点,指数级增长);
上述方法的目的是在拥塞发生时循序减少主机发送到网络中的分组数,使得发生拥塞的路由器有足够的时间把队列中积压的分组处理完毕。慢开始和拥塞控制算法常常作为一个整体使用,而快重传和快恢复则是为了减少因为拥塞导致的数据包丢失带来的重传时间,从而避免传递无用的数据到网络。快重传的机制是:
-1. 接收方建立这样的机制,如果一个包丢失,则对后续的包继续发送针对该包的重传请求;
-2. 一旦发送方接收到三个一样的确认,就知道该包之后出现了错误,立刻重传该包;
-3. 此时发送方开始执行“快恢复”算法:
*1. 慢开始门限减半;
*2. cwnd设为慢开始门限减半后的数值;
*3. 执行拥塞避免算法(高起点,线性增长);
TCP 滑动窗口(发送窗口和接收窗口)
TCP的滑动窗口主要有两个作用,一是提供TCP的可靠性,二是提供TCP的流控特性。同时滑动窗口机制还体现了TCP面向字节流的设计思路。
TCP的Window是一个16bit位字段,它代表的是窗口的字节容量,也就是TCP的标准窗口最大为2^16-1=65535个字节。
另外在TCP的选项字段中还包含了一个TCP窗口扩大因子,option-kind为3,option-length为3个字节,option-data取值范围0-14。窗口扩大因子用来扩大TCP窗口,可把原来16bit的窗口,扩大为31bit。
滑动窗口基本原理
1)对于TCP会话的发送方,任何时候在其发送缓存内的数据都可以分为4类,“已经发送并得到对端ACK的”,“已经发送但还未收到对端ACK的”,“未发送但对端允许发送的”,“未发送且对端不允许发送”。“已经发送但还未收到对端ACK的”和“未发送但对端允许发送的”这两部分数据称之为发送窗口(中间两部分)。
当收到接收方新的ACK对于发送窗口中后续字节的确认是,窗口滑动,滑动原理如下图。
当收到ACK=36时窗口滑动。
2)对于TCP的接收方,在某一时刻在它的接收缓存内存在3种。“已接收”,“未接收准备接收”,“未接收并未准备接收”(由于ACK直接由TCP协议栈回复,默认无应用延迟,不存在“已接收未回复ACK”)。其中“未接收准备接收”称之为接收窗口。
发送窗口与接收窗口关系
TCP是双工的协议,会话的双方都可以同时接收、发送数据。TCP会话的双方都各自维护一个“发送窗口”和一个“接收窗口”。其中各自的“接收窗口”大小取决于应用、系统、硬件的限制(TCP传输速率不能大于应用的数据处理速率)。各自的“发送窗口”则要求取决于对端通告的“接收窗口”,要求相同。
滑动窗口实现面向流的可靠性
最基本的传输可靠性来源于“确认重传”机制。
TCP的滑动窗口的可靠性也是建立在“确认重传”基础上的。
发送窗口只有收到对端对于本段发送窗口内字节的ACK确认,才会移动发送窗口的左边界。
接收窗口只有在前面所有的段都确认的情况下才会移动左边界。当在前面还有字节未接收但收到后面字节的情况下,窗口不会移动,并不对后续字节确认。以此确保对端会对这些数据重传。
滑动窗口的流控特性
TCP的滑动窗口是动态的,我们可以想象成小学常见的一个数学题,一个水池,体积V,每小时进水量V1,出水量V2。当水池满了就不允许再注入了,如果有个液压系统控制水池大小,那么就可以控制水的注入速率和量。这样的水池就类似TCP的窗口。应用根据自身的处理能力变化,通过本端TCP接收窗口大小控制来对对对端的发送窗口流量限制。
应用程序在需要(如内存不足)时,通过API通知TCP协议栈缩小TCP的接收窗口。然后TCP协议栈在下个段发送时包含新的窗口大小通知给对端,对端按通知的窗口来改变发送窗口,以此达到减缓发送速率的目的。