DP优化方法杂记
一些奇妙trick
观察决策集合
此类问题与单调队列优化dp有部分相似,都是利用决策集合的特殊性质对dp进行优化。
CF229D Towers
题意:给出一个序列,每次可以花费一体力合并相邻两个数,问使此序列形成一个非递减序列最少需要花费多少体力。
由于有明显的操作,考虑从转移角度设计方程,从左往右合并,由于合并只发生在相邻的数对中,而目标为一个非递减序列,主要影响是否合并的就是前一个数的权值,记 \(f_{i,j}\) 表示使前 \(i\) 个数非递减,最后一个数由 \(j\) 到 \(i\) 合并来的最小体力,可以得到一个 \(\Theta(n^3)\) 的方程为 $ f_{i,j}=\min\limits_{1\le k \le j}f_{j,k}+(i-j) $,满足 \(sum_i-sum_{j-1}\ge sum_{j-1}-sum_{k-1}\)。
观察需要满足的条件,可以发现对于一个固定的 \(j\),随着 \(i\) 的增长,能转移的 \(k\) 的集合也只增不减,因此我们可以对于没有 \(j\) 维护一个指针,表示已经求得的 \(k\) 的集合的最右端,每次判断指针是否能够移动并更新最小值,我们定义每次判断分为失败判断和成功判断,由于失败判断每次判断只会产生一次,成功判断对于每个状态也只会产生一次,因此复杂度为均摊 \(\Theta(n^2)\),可以通过此题。
对于进一步的优化,可以查看单调队列优化中的 [CSP-S2019] 划分一题,思路大体相同。
DS优化dp
单调队列优化dp
算法介绍
单调队列优化dp通常与状态转移方程中的单调性息息相关,这里的单调性通常指的是决策的单调性,如果把状态看做空间中的点,在决策集合不断扩大的同时,最优决策点随某一维度不断增长的同时增长就是决策单调性,通俗地说,在满足决策单调性的方程中,现在的最优方案来源一定在前面来源的“后面”。
而单调队列优化dp则是当转移范围受到两个变量限制,并且决策集合只定向移动时,用单调队列维护决策集合的变化。因此,在dp中,如果某一状态的答案选取范围有一些特殊性质时,你就可以尝试分析是否有单调性等特殊性质,成为解题的关键。
决策集合大小固定
此类为最常见的单调队列类题目,通常对于每个状态都有固定的转移范围,注意观察题目中固定的信息,用单调队列进行维护。
P2569 [SCOI2010]股票交易
决策集合不断变化
在决策集合不断变化的题目中也可以使用单调队列,只要保持定向移动的特性即可。