[LeetCode] Graph Valid Tree

Graph Valid Tree

Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), write a function to check whether these edges make up a valid tree.

For example:

Given n = 5 and edges = [[0, 1], [0, 2], [0, 3], [1, 4]], return true.

Given n = 5 and edges = [[0, 1], [1, 2], [2, 3], [1, 3], [1, 4]], return false.

Hint:

  1. Given n = 5 and edges = [[0, 1], [1, 2], [3, 4]], what should your return? Is this case a valid tree?
  2. According to the definition of tree on Wikipedia: “a tree is an undirected graph in which any two vertices are connected by exactly one path. In other words, any connected graph without simple cycles is a tree.”

Note: you can assume that no duplicate edges will appear in edges. Since all edges are undirected, [0, 1] is the same as [1, 0] and thus will not appear together in edges.

首先要判断是不是只有一个连通分支,如果不是肯定不是树,如果只有一个连通分支,再判断分支内有没有环,如果没有环,那么就是树。求连通分支个数用并查集,判断是否有环用DFS。

 1 class Solution {
 2 public:
 3     int findFather(vector<int> &father, int x) {
 4         while (x != father[x]) x = father[x];
 5         return x;
 6     }
 7     bool dfs(vector<vector<int>> &graph, vector<bool> &visit, int u, int f) {
 8         visit[u] = true;
 9         for (auto v : graph[u]) if (v != f) {
10             if (visit[v]) return false;
11             else if (!dfs(graph, visit, v, u)) return false;
12         }
13         return true;
14     }
15     bool validTree(int n, vector<pair<int, int>>& edges) {
16         vector<int> father(n);
17         for (int i = 0; i < n; ++i) father[i] = i;
18         for (auto edge : edges) {
19             int fa = findFather(father, edge.first), fb = findFather(father, edge.second);
20             if (fa < fb) father[fb] = fa;
21             else father[fa] = fb;
22         };
23         int cnt = 0;
24         for (int i = 0; i < n; ++i) {
25             if (i == father[i]) ++cnt;
26             if (cnt > 1) return false;
27         }
28         vector<vector<int>> graph(n);
29         vector<bool> visit(n, false);
30         for (auto edge : edges) {
31             int u = edge.first, v = edge.second;
32             graph[u].push_back(v);
33             graph[v].push_back(u);
34         }
35         return dfs(graph, visit, 0, -1);
36     }
37 };

 

posted @ 2015-09-06 11:17  Eason Liu  阅读(531)  评论(0编辑  收藏  举报