[Leetcode] Unique Paths II

Follow up for "Unique Paths":

Now consider if some obstacles are added to the grids. How many unique paths would there be?

An obstacle and empty space is marked as 1 and 0 respectively in the grid.

For example,

There is one obstacle in the middle of a 3x3 grid as illustrated below.

[
  [0,0,0],
  [0,1,0],
  [0,0,0]
]

The total number of unique paths is 2.

Note: m and n will be at most 100.

 

将obstacle标记为-1,其余基本跟上一题一样。

 

 1 class Solution {
 2 public:
 3     int uniquePathsWithObstacles(vector<vector<int> > &obstacleGrid) {
 4         int m = obstacleGrid.size();
 5         int n = obstacleGrid[0].size();
 6         int i, j;
 7         for (i = 0; i < m; ++i) {
 8             for (j = 0; j < n; ++j) {
 9                 obstacleGrid[i][j] = -obstacleGrid[i][j];
10             }
11         }
12         for (i = 0; i < m; ++i) {
13             if (obstacleGrid[i][0] == -1) break;
14             obstacleGrid[i][0] = 1;
15         }
16         for (j = 0; j < n; ++j) {
17             if (obstacleGrid[0][j] == -1) break;
18             obstacleGrid[0][j] = 1;
19         }
20         for (i = 1; i < m; ++i) {
21             for (j = 1; j < n; ++j) {
22                 if (obstacleGrid[i][j] == -1) continue;
23                 obstacleGrid[i][j] += (obstacleGrid[i-1][j] == -1) ? 0 : obstacleGrid[i-1][j];
24                 obstacleGrid[i][j] += (obstacleGrid[i][j-1] == -1) ? 0 : obstacleGrid[i][j-1];
25             }
26         }
27         return (obstacleGrid[m-1][n-1] == -1) ? 0 : obstacleGrid[m-1][n-1];
28     }
29 };

 

posted @ 2014-03-31 19:16  Eason Liu  阅读(160)  评论(0编辑  收藏  举报