【雕爷学编程】Arduino动手做(149)---MAX9814咪头传感器模块4
37款传感器与执行器的提法,在网络上广泛流传,其实Arduino能够兼容的传感器模块肯定是不止这37种的。鉴于本人手头积累了一些传感器和执行器模块,依照实践出真知(一定要动手做)的理念,以学习和交流为目的,这里准备逐一动手尝试系列实验,不管成功(程序走通)与否,都会记录下来—小小的进步或是搞不掂的问题,希望能够抛砖引玉。
【Arduino】168种传感器模块系列实验(资料代码+仿真编程+图形编程)
实验一百四十九:MAX9814麦克风放大器模块 MIC话筒声音放大/咪头传感器
【Arduino】168种传感器模块系列实验(资料代码+仿真编程+图形编程)
实验一百四十九:MAX9814麦克风放大器模块 MIC话筒声音放大/咪头传感器
项目三十二:使用FFT库的迷你音乐频谱仪(声谱可视化器)
实验接线方法: max9814接A0
oled模块 Ardunio Uno
GND---------GND接地线
VCC---------5V 接电源
SDA---------A4
SCL ------- A5
实验开源代码
/* 【Arduino】168种传感器模块系列实验(资料代码+仿真编程+图形编程) 实验一百四十九:MAX9814麦克风放大器模块 MIC话筒声音放大/咪头传感器 项目三十二:使用FFT库的迷你音乐频谱仪(声谱可视化器) 实验接线方法: max9814接A0 oled模块 Ardunio Uno GND---------GND接地线 VCC---------5V 接电源 SDA---------A4 SCL ------- A5 */ #include "arduinoFFT.h" #include <Adafruit_GFX.h> #include <Adafruit_SSD1306.h> #define SAMPLES 64 // power of 2 #define SAMPLING_FREQ 8000 // 12 kHz Fmax = sampleF /2 #define AMPLITUDE 150 // 灵敏度 #define FREQUENCY_BANDS 14 #define SCREEN_WIDTH 128 #define SCREEN_HEIGHT 32 #define BARWIDTH 11 #define BARS 11 #define ANALOG_PIN A0 #define OLED_RESET -1 // 重置引脚 #(如果共享 Arduino 重置引脚,则为 -1) Adafruit_SSD1306 display(SCREEN_WIDTH, SCREEN_HEIGHT, &Wire, OLED_RESET); double vImag[SAMPLES]; double vReal[SAMPLES]; unsigned long sampling_period_us; arduinoFFT fft = arduinoFFT(vReal, vImag, SAMPLES, SAMPLING_FREQ); //调整参考以去除背景噪声 float reference = log10(80.0); double coutoffFrequencies[FREQUENCY_BANDS]; void setup() { // SSD1306_SWITCHCAPVCC = generate display voltage from 3.3V internally if (!display.begin(SSD1306_SWITCHCAPVCC, 0x3C)) { // Address 0x3C for 128x32 for (;;); // Don't proceed, loop forever } // Setup display display.clearDisplay(); display.display(); display.setRotation(0); display.invertDisplay(false); sampling_period_us = (1.0 / SAMPLING_FREQ ) * pow(10.0, 6); // 计算截止频率,以对数标度为基数 POt double basePot = pow(SAMPLING_FREQ / 2.0, 1.0 / FREQUENCY_BANDS); coutoffFrequencies[0] = basePot; for (int i = 1 ; i < FREQUENCY_BANDS; i++ ) { coutoffFrequencies[i] = basePot * coutoffFrequencies[i - 1]; } // 绘制虚线以分离频段 for (int i = 0; i < BARS - 1 ; i++) { for (int j = 0; j < SCREEN_HEIGHT ; j += 4) { display.writePixel((i + 1)*BARWIDTH + 2 , j, SSD1306_WHITE ); } } display.drawRect(0, 0, SCREEN_WIDTH, SCREEN_HEIGHT, SSD1306_WHITE); } int oldHeight[20]; int oldMax[20]; double maxInFreq; void loop() { // 采样 for (int i = 0; i < SAMPLES; i++) { unsigned long newTime = micros(); int value = analogRead(ANALOG_PIN); vReal[i] = value; vImag[i] = 0; while (micros() < (newTime + sampling_period_us)) { yield(); } } // 计算 FFT fft.DCRemoval(); fft.Windowing(FFT_WIN_TYP_HAMMING, FFT_FORWARD); fft.Compute(FFT_FORWARD); fft.ComplexToMagnitude(); double median[20]; double max[20]; int index = 0; double hzPerSample = (1.0 * SAMPLING_FREQ) / SAMPLES; // double hz = 0; double maxinband = 0; double sum = 0; int count = 0; for (int i = 2; i < (SAMPLES / 2) ; i++) { count++; sum += vReal[i]; if (vReal[i] > max[index] ) { max[index] = vReal[i]; } if (hz > coutoffFrequencies[index]) { median[index] = sum / count; sum = 0.0; count = 0; index++; max[index] = 0; median[index] = 0; } hz += hzPerSample; } // 计算每个频段的中值和最大值 if ( sum > 0.0) { median[index] = sum / count; if (median[index] > maxinband) { maxinband = median[index]; } } int bar = 0; for (int i = FREQUENCY_BANDS - 1; i >= 3; i--) { int newHeight = 0; int newMax = 0; // 计算实际分贝 if (median[i] > 0 && max[i] > 0 ) { newHeight = 20.0 * (log10(median[i] ) - reference); newMax = 20.0 * (log10(max[i] ) - reference); } // 调整最小和最大级别 if (newHeight < 0 || newMax < 0) { newHeight = 1; newMax = 1; } if (newHeight >= SCREEN_HEIGHT - 2) { newHeight = SCREEN_HEIGHT - 3; } if (newMax >= SCREEN_HEIGHT - 2) { newMax = SCREEN_HEIGHT - 3; } int barX = bar * BARWIDTH + 5; // 删除旧水平中位数 if (oldHeight[i] > newHeight) { display.fillRect(barX, newHeight + 1, 7, oldHeight[i], SSD1306_BLACK); } // 删除旧的最大级别 if ( oldMax[i] > newHeight) { for (int j = oldMax[i]; j > newHeight; j -= 2) { display.drawFastHLine(barX , j, 7, SSD1306_BLACK); } } // 绘制新的最大级别 for (int j = newMax; j > newHeight; j -= 2) { display.drawFastHLine(barX , j, 7, SSD1306_WHITE); } // 绘制新的级别中位数 display.fillRect(barX , 1, 7, newHeight, SSD1306_WHITE); oldMax[i] = newMax; oldHeight[i] = newHeight; bar++; } display.drawFastHLine(0 , SCREEN_HEIGHT - 1, SCREEN_WIDTH, SSD1306_WHITE); display.display(); }
Arduino实验场景图
项目三十二:使用FFT库的迷你音乐频谱仪(声谱可视化器)(完整测试视频2分41秒)
https://v.youku.com/v_show/id_XNTgwNzU4MDIzNg==.html?spm=a2hcb.playlsit.page.1
【Arduino】168种传感器模块系列实验(资料代码+仿真编程+图形编程)
实验一百四十九:MAX9814麦克风放大器模块 MIC话筒声音放大/咪头传感器
项目三十三:Arduino OLED 频谱分析仪
Arduino实验开源代码
/* 【Arduino】168种传感器模块系列实验(资料代码+仿真编程+图形编程) 实验一百四十九:MAX9814麦克风放大器模块 MIC话筒声音放大/咪头传感器 项目三十三:Arduino OLED 频谱分析仪 实验接线方法: max9814接A0 oled模块 Ardunio Uno GND---------GND接地线 VCC---------5V 接电源 SDA---------A4 SCL ------- A5 */ #include <fix_fft.h> #include <ssd1306.h> #include <nano_engine.h> // These are user-adjustable #define LOG_OUTPUT // Uncomment to enable logarithmic output (exchanges absolute resoluton for more readable output; may require different below params) #define SAMPLING_FREQUENCY 15000 // Sampling frequency (Actual max measured frequency captured is half) #define TIME_FACTOR 2 // Smoothing factor (lower is more dynamic, higher is smoother) ranging from 1 to 10+ #define SCALE_FACTOR 15 // Direct scaling factor (raise for higher bars, lower for shorter bars) #ifdef LOG_OUTPUT const float log_scale = 64. / log(64. / SCALE_FACTOR + 1.); // Attempts to create an equivalent to SCALE_FACTOR for log function #endif const float coeff = 1. / TIME_FACTOR; // Time smoothing coefficients (used to factor in previous data) const float anti_coeff = (TIME_FACTOR - 1.) / TIME_FACTOR; const unsigned int sampling_period_us = round(1000000 * (2.0 / SAMPLING_FREQUENCY)); // Sampling period (doubled to account for overclock) int8_t data[64], buff[32]; // used to store FFT input/output and past data unsigned long microseconds; // used for timekeeping int summ, avg; // used for DC bias elimination NanoEngine<TILE_32x32_MONO> engine; // declares nanoengine void setup() { OSCCAL = 240; // Overclocks the MCU to around 30 MHz, set lower if this causes instability, raise if you can/want ADCSRA &= ~(bit (ADPS0) | bit (ADPS1) | bit (ADPS2)); // clear ADC prescaler bits ADCSRA |= bit (ADPS2); // sets ADC clock in excess of 10kHz ADCSRA |= bit (ADPS0); ssd1306_128x64_i2c_init(); // initializes OLED ssd1306_clearScreen(); // clears OLED engine.begin(); // inititalizes nanoengine }; void loop() { summ = 0; for (int i = 0; i < 64; i++) { microseconds = micros(); data[i] = ((analogRead(A0)) >> 2) - 128; // Fitting analogRead data (range:0 - 1023) to int8_t array (range:-128 - 127) summ += data[i]; while (micros() < (microseconds + sampling_period_us)) { // Timing out uC ADC to fulfill sampling frequency requirement } } // Eliminating remaining DC component (produces usable data in FFT bin #0, which is usually swamped by DC bias) avg = summ / 64; for (int i = 0; i < 64; i++) { data[i] -= avg; } fix_fftr(data, 6, 0); // Performing real FFT // Time smoothing by user-determined factor and user-determined scaling for (int count = 0; count < 32; count++) { if (data[count] < 0) data[count] = 0; // Eliminating negative output of fix_fftr #ifdef LOG_OUTPUT else data[count] = log_scale * log((float)(data[count] + 1)); // Logarithmic function equivalent to SCALING_FACTOR*log2(x+1) #else else data[count] *= SCALE_FACTOR; // Linear scaling up according to SCALE_FACTOR #endif data[count] = (float)buff[count] * anti_coeff + (float)data[count] * coeff; // Smoothing by factoring in past data buff[count] = data[count]; // Storing current output as next frame's past data if (data[count] > 63) data[count] = 63; // Capping output at screen height } // Output to SSD1306 using nanoengine canvas from library engine.refresh(); // Mark entire screen to be refreshed engine.canvas.clear(); // Clear canvas as previous data for (int i = 0; i < 8; i++) { engine.canvas.drawVLine(i * 4, 31 - (data[i] + 1), 31); // Draw to canvas data for lower-leftest sector (FFT bins 0 - 7, lower half) } engine.canvas.blt(0, 32); // Outputs canvas to OLED with an offset (x pixels, y pixels) engine.canvas.clear(); for (int i = 0; i < 8; i++) { if (data[i] > 31) engine.canvas.drawVLine(i * 4, 31 - (data[i] - 31), 31); // Draw to canvas data for upper-leftest sector (FFT bins 0 - 7, upper half) } engine.canvas.blt(0, 0); engine.canvas.clear(); for (int i = 8; i < 16; i++) { engine.canvas.drawVLine((i - 8) * 4, 31 - (data[i] + 1), 31); // FFT bins 8 - 15, lower half } engine.canvas.blt(32, 32); engine.canvas.clear(); for (int i = 8; i < 16; i++) { if (data[i] > 31) engine.canvas.drawVLine((i - 8) * 4, 31 - (data[i] - 31), 31); // FFT bins 9 - 15, upper half } engine.canvas.blt(32, 0); engine.canvas.clear(); for (int i = 16; i < 24; i++) { engine.canvas.drawVLine((i - 16) * 4, 31 - (data[i] + 1), 31); // FFT bins 16 - 23, lower half } engine.canvas.blt(64, 32); engine.canvas.clear(); for (int i = 16; i < 24; i++) { if (data[i] > 31) engine.canvas.drawVLine((i - 16) * 4, 31 - (data[i] - 31), 31); // FFT bins 16 - 23, upper half } engine.canvas.blt(64, 0); engine.canvas.clear(); for (int i = 24; i < 32; i++) { engine.canvas.drawVLine((i - 24) * 4, 31 - (data[i] + 1), 31); // FFT bins 24 - 31, lower half } engine.canvas.blt(96, 32); engine.canvas.clear(); for (int i = 24; i < 32; i++) { if (data[i] > 31) engine.canvas.drawVLine((i - 24) * 4, 31 - (data[i] - 31), 31); // FFT bins 24 - 31, upper half } engine.canvas.blt(96, 0); }
Arduino实验场景图
项目三十三:Arduino OLED 频谱分析仪(视频,法语版《因为爱情》3分12秒)
https://v.youku.com/v_show/id_XNTgwNzY3ODkwNA==.html?spm=a2hcb.playlsit.page.1
【Arduino】168种传感器模块系列实验(资料代码+仿真编程+图形编程)
实验一百四十九:MAX9814麦克风放大器模块 MIC话筒声音放大/咪头传感器
项目三十四:八位音乐反应式 LED 灯条
Arduino实验开源代码
/* 【Arduino】168种传感器模块系列实验(资料代码+图形编程+仿真编程) 实验一百四十九:MAX9814麦克风放大器模块 MIC话筒声音放大/咪头传感器 项目三十四:八位音乐反应式 LED 灯条 实验接线方法: max9814接A0 oled模块 Ardunio Uno GND---------GND接地线 VCC---------5V 接电源 SDA---------A4 SCL ------- A5 */ #include <Adafruit_NeoPixel.h> #include <math.h> #define N_PIXELS 8 #define MIC_PIN A0 #define LED_PIN 6 #define SAMPLE_WINDOW 5 #define PEAK_HANG 24 #define PEAK_FALL 4 #define INPUT_FLOOR 10 #define INPUT_CEILING 50 byte peak = 16; unsigned int sample; byte Count = 0; byte HangCount = 0; Adafruit_NeoPixel strip = Adafruit_NeoPixel(N_PIXELS, LED_PIN, NEO_GRB + NEO_KHZ800); void setup() { Serial.begin(9600); analogReference(EXTERNAL); strip.setBrightness(22); strip.show(); strip.begin(); } float fscale( float originalMin, float originalMax, float newBegin, float newEnd, float inputValue, float curve) { float OriginalRange = 0; float NewRange = 0; float zeroRefCurVal = 0; float normalizedCurVal = 0; float rangedValue = 0; boolean invFlag = 0; if (curve > 10) curve = 10; if (curve < -10) curve = -10; curve = (curve * -.1) ; curve = pow(10, curve); if (inputValue < originalMin) { inputValue = originalMin; } if (inputValue > originalMax) { inputValue = originalMax; } OriginalRange = originalMax - originalMin; if (newEnd > newBegin) { NewRange = newEnd - newBegin; } else { NewRange = newBegin - newEnd; invFlag = 1; } zeroRefCurVal = inputValue - originalMin; normalizedCurVal = zeroRefCurVal / OriginalRange; // normalize to 0 - 1 float Serial.print(OriginalRange, DEC); Serial.print(" "); Serial.print(NewRange, DEC); Serial.print(" "); Serial.println(zeroRefCurVal, DEC); Serial.println(); delay(10); if (originalMin > originalMax ) { return 0; } if (invFlag == 0) { rangedValue = (pow(normalizedCurVal, curve) * NewRange) + newBegin; } else { rangedValue = newBegin - (pow(normalizedCurVal, curve) * NewRange); } return rangedValue; } void loop() { unsigned long startMillis = millis(); float peakToPeak = 0; unsigned int signalMax = 0; unsigned int signalMin = 1023; unsigned int c, y; while (millis() - startMillis < SAMPLE_WINDOW) { sample = analogRead(MIC_PIN); if (sample < 1024) { if (sample > signalMax) { signalMax = sample; } else if (sample < signalMin) { signalMin = sample; } } } peakToPeak = signalMax - signalMin; for (int i = 0; i <= strip.numPixels() - 1; i++) { strip.setPixelColor(i, Wheel(map(i, 0, strip.numPixels() - 1, 30, 150))); } c = fscale(INPUT_FLOOR, INPUT_CEILING, strip.numPixels(), 0, peakToPeak, 2); if (c < peak) { peak = c; HangCount = 0; } if (c <= strip.numPixels()) { drawLine(strip.numPixels(), strip.numPixels() - c, strip.Color(0, 0, 0)); } y = strip.numPixels() - peak; strip.setPixelColor(y - 1, Wheel(map(y, 0, strip.numPixels() - 1, 30, 150))); strip.show(); if (HangCount > PEAK_HANG) { if (++Count >= PEAK_FALL) { peak++; Count = 0; } } else { HangCount++; } } void drawLine(uint8_t from, uint8_t to, uint32_t c) { uint8_t fromTemp; if (from > to) { fromTemp = from; from = to; to = fromTemp; } for (int i = from; i <= to; i++) { strip.setPixelColor(i, c); } } uint32_t Wheel(byte WheelPos) { if (WheelPos < 85) { return strip.Color(WheelPos * 3, 255 - WheelPos * 3, 0); } else if (WheelPos < 170) { WheelPos -= 85; return strip.Color(255 - WheelPos * 3, 0, WheelPos * 3); } else { WheelPos -= 170; return strip.Color(0, WheelPos * 3, 255 - WheelPos * 3); } }
实验串口返回情况
Arduino实验场景图
项目三十四:八位音乐反应式 LED 灯条
(实验视频)
https://v.youku.com/v_show/id_XNTgwODQ3NzI5Mg==.html?spm=a2hcb.playlsit.page.1
【Arduino】168种传感器模块系列实验(资料代码+仿真编程+图形编程)
实验一百四十九:MAX9814麦克风放大器模块 MIC话筒声音放大/咪头传感器
项目三十五:十六位音乐反应式 LED 灯条
实验接线方法: max9814接A0
oled模块 Ardunio Uno
GND---------GND接地线
VCC---------5V 接电源
SDA---------A4
SCL ------- A5
实验开源代码
/* 【Arduino】168种传感器模块系列实验(资料代码+图形编程+仿真编程) <span style="background-color: rgb(255, 255, 255);">实验一百五十九:MAX9814麦克风放大器模块 MIC话筒声音放大/咪头传感器</span> 项目三十五:十六位音乐反应式 LED 灯条 实验接线方法: max9814接A0 oled模块 Ardunio Uno GND---------GND接地线 VCC---------5V 接电源 SDA---------A4 SCL ------- A5 */ #include <Adafruit_NeoPixel.h> #include <math.h> #define N_PIXELS 16 #define MIC_PIN A0 #define LED_PIN 6 #define SAMPLE_WINDOW 5 #define PEAK_HANG 24 #define PEAK_FALL 4 #define INPUT_FLOOR 10 #define INPUT_CEILING 50 byte peak = 16; unsigned int sample; byte Count = 0; byte HangCount = 0; Adafruit_NeoPixel strip = Adafruit_NeoPixel(N_PIXELS, LED_PIN, NEO_GRB + NEO_KHZ800); void setup() { Serial.begin(9600); analogReference(EXTERNAL); strip.setBrightness(22); strip.show(); strip.begin(); } float fscale( float originalMin, float originalMax, float newBegin, float newEnd, float inputValue, float curve) { float OriginalRange = 0; float NewRange = 0; float zeroRefCurVal = 0; float normalizedCurVal = 0; float rangedValue = 0; boolean invFlag = 0; if (curve > 10) curve = 10; if (curve < -10) curve = -10; curve = (curve * -.1) ; curve = pow(10, curve); if (inputValue < originalMin) { inputValue = originalMin; } if (inputValue > originalMax) { inputValue = originalMax; } OriginalRange = originalMax - originalMin; if (newEnd > newBegin) { NewRange = newEnd - newBegin; } else { NewRange = newBegin - newEnd; invFlag = 1; } zeroRefCurVal = inputValue - originalMin; normalizedCurVal = zeroRefCurVal / OriginalRange; // normalize to 0 - 1 float Serial.print(OriginalRange, DEC); Serial.print(" "); Serial.print(NewRange, DEC); Serial.print(" "); Serial.println(zeroRefCurVal, DEC); Serial.println(); delay(10); if (originalMin > originalMax ) { return 0; } if (invFlag == 0) { rangedValue = (pow(normalizedCurVal, curve) * NewRange) + newBegin; } else { rangedValue = newBegin - (pow(normalizedCurVal, curve) * NewRange); } return rangedValue; } void loop() { unsigned long startMillis = millis(); float peakToPeak = 0; unsigned int signalMax = 0; unsigned int signalMin = 1023; unsigned int c, y; while (millis() - startMillis < SAMPLE_WINDOW) { sample = analogRead(MIC_PIN); if (sample < 1024) { if (sample > signalMax) { signalMax = sample; } else if (sample < signalMin) { signalMin = sample; } } } peakToPeak = signalMax - signalMin; for (int i = 0; i <= strip.numPixels() - 1; i++) { strip.setPixelColor(i, Wheel(map(i, 0, strip.numPixels() - 1, 30, 150))); } c = fscale(INPUT_FLOOR, INPUT_CEILING, strip.numPixels(), 0, peakToPeak, 2); if (c < peak) { peak = c; HangCount = 0; } if (c <= strip.numPixels()) { drawLine(strip.numPixels(), strip.numPixels() - c, strip.Color(0, 0, 0)); } y = strip.numPixels() - peak; strip.setPixelColor(y - 1, Wheel(map(y, 0, strip.numPixels() - 1, 30, 150))); strip.show(); if (HangCount > PEAK_HANG) { if (++Count >= PEAK_FALL) { peak++; Count = 0; } } else { HangCount++; } } void drawLine(uint8_t from, uint8_t to, uint32_t c) { uint8_t fromTemp; if (from > to) { fromTemp = from; from = to; to = fromTemp; } for (int i = from; i <= to; i++) { strip.setPixelColor(i, c); } } uint32_t Wheel(byte WheelPos) { if (WheelPos < 85) { return strip.Color(WheelPos * 3, 255 - WheelPos * 3, 0); } else if (WheelPos < 170) { WheelPos -= 85; return strip.Color(255 - WheelPos * 3, 0, WheelPos * 3); } else { WheelPos -= 170; return strip.Color(0, WheelPos * 3, 255 - WheelPos * 3); } }
Arduino实验场景图
项目三十五:十六位音乐反应式 LED 灯条(实验视频)
https://v.youku.com/v_show/id_XNTgwODQ4Njk2MA==.html?spm=a2hcb.playlsit.page.1
【Arduino】168种传感器模块系列实验(资料代码+仿真编程+图形编程)
实验一百四十九:MAX9814麦克风放大器模块 MIC话筒声音放大/咪头传感器
项目四十:十六位音乐频谱灯条
Arduino实验开源代码
/* 【Arduino】168种传感器模块系列实验(资料代码+图形编程+仿真编程) 实验六十一:直条16位 WS2812B 5050 RGB LED内置全彩驱动彩灯模块 项目四十:十六位音乐频谱灯条 */ #include "FastLED.h" #define OCTAVE 1 // // Group buckets into octaves (use the log output function LOG_OUT 1) #define OCT_NORM 0 // Don't normalise octave intensities by number of bins #define FHT_N 256 // set to 256 point fht #include <FHT.h> // include the library //int noise[] = {204,188,68,73,150,98,88,68}; // noise level determined by playing pink noise and seeing levels [trial and error]{204,188,68,73,150,98,88,68} // int noise[] = {204,190,108,85,65,65,55,60}; // noise for mega adk int noise[] = {204,195,100,90,85,80,75,75}; // noise for NANO //int noise[] = {204,198,100,85,85,80,80,80}; float noise_fact[] = {15, 7, 1.5, 1, 1.2, 1.4, 1.7,3}; // noise level determined by playing pink noise and seeing levels [trial and error]{204,188,68,73,150,98,88,68} float noise_fact_adj[] = {15, 7, 1.5, 1, 1.2, 1.4, 1.7,3}; // noise level determined by playing pink noise and seeing levels [trial and error]{204,188,68,73,150,98,88,68} #define LED_PIN 6 #define LED_TYPE WS2812 #define COLOR_ORDER GRB // Params for width and height const uint8_t kMatrixWidth = 8; const uint8_t kMatrixHeight = 8;//----------was 27 //#define NUM_LEDS (kMatrixWidth * kMatrixHeight) #define NUM_LEDS 64 CRGB leds[NUM_LEDS]; int counter2=0; void setup() { Serial.begin(9600); delay(1000); FastLED.addLeds<LED_TYPE, LED_PIN, COLOR_ORDER>(leds, NUM_LEDS).setCorrection( TypicalLEDStrip ); FastLED.setBrightness (33); fill_solid(leds, NUM_LEDS, CRGB::Black); FastLED.show(); // TIMSK0 = 0; // turn off timer0 for lower jitter ADCSRA = 0xe5; // set the adc to free running mode ADMUX = 0x40; // use adc0 DIDR0 = 0x01; // turn off the digital input for adc0 } void loop() { int prev_j[8]; int beat=0; int prev_oct_j; int counter=0; int prev_beat=0; int led_index=0; int saturation=0; int saturation_prev=0; int brightness=0; int brightness_prev=0; while (1) { // reduces jitter cli(); // UDRE interrupt slows this way down on arduino1.0 for (int i = 0 ; i < FHT_N ; i++) { // save 256 samples while (!(ADCSRA & 0x10)); // wait for adc to be ready ADCSRA = 0xf5; // restart adc byte m = ADCL; // fetch adc data byte j = ADCH; int k = (j << 8) | m; // form into an int k -= 0x0200; // form into a signed int k <<= 6; // form into a 16b signed int fht_input[i] = k; // put real data into bins } fht_window(); // window the data for better frequency response fht_reorder(); // reorder the data before doing the fht fht_run(); // process the data in the fht fht_mag_octave(); // take the output of the fht fht_mag_log() // every 50th loop, adjust the volume accourding to the value on A2 (Pot) if (counter >= 50) { ADMUX = 0x40 | (1 & 0x07); // set admux to look at Analogpin A1 - Master Volume while (!(ADCSRA & 0x10)); // wait for adc to be ready ADCSRA = 0xf5; // restart adc delay(10); while (!(ADCSRA & 0x10)); // wait for adc to be ready ADCSRA = 0xf5; // restart adc byte m = ADCL; // fetch adc data byte j = ADCH; int k = (j << 8) | m; // form into an int float master_volume=(k+0.1)/1000 +.75; // so the valu will be between ~0.5 and 1.---------------------+.75 was .5 Serial.println (master_volume); for (int i=1; i<8; i++) { noise_fact_adj[i]=noise_fact[i]*master_volume; } ADMUX = 0x40 | (0 & 0x07); // set admux back to look at A0 analog pin (to read the microphone input counter = 0; } sei(); counter++; // End of Fourier Transform code - output is stored in fht_oct_out[i]. // i=0-7 frequency (octave) bins (don't use 0 or 1), fht_oct_out[1]= amplitude of frequency for bin 1 // for loop a) removes background noise average and takes absolute value b) low / high pass filter as still very noisy // c) maps amplitude of octave to a colour between blue and red d) sets pixel colour to amplitude of each frequency (octave) for (int i = 1; i < 8; i++) { // goes through each octave. skip the first 1, which is not useful int j; j = (fht_oct_out[i] - noise[i]); // take the pink noise average level out, take the asbolute value to avoid negative numbers if (j<10) {j=0;} j= j*noise_fact_adj[i]; if (j<10) {j=0;} else { j= j*noise_fact_adj[i]; if (j>180) { if (i>=7) { beat+=2; } else { beat+=1; } } j=j/30; j=j*30; // (force it to more discrete values) } prev_j[i]=j; // Serial.print(j); // Serial.print(" "); // this fills in 11 LED's with interpolated values between each of the 8 OCT values if (i>=2) { led_index=2*i-3; prev_oct_j=(j+prev_j[i-1])/2; saturation=constrain(j+50, 0,255);//-----------50 was 30 saturation_prev=constrain(prev_oct_j+50, 0,255); brightness=constrain(j, 0,255); brightness_prev=constrain(prev_oct_j, 0,255); if (brightness==255) { saturation=50; brightness=200; } if (brightness_prev==255) { saturation_prev=50; brightness_prev=200; } for (uint8_t y=0;y<kMatrixHeight;y++){ leds[XY(led_index-1,y)] = CHSV(j+y*30,saturation, brightness); if (i>2){ prev_oct_j=(j+prev_j[i-1])/2; leds[ XY(led_index-2,y)]=CHSV(prev_oct_j+y*30,saturation_prev, brightness_prev); } } } } if (beat>=7) { fill_solid(leds, NUM_LEDS, CRGB::Gray); FastLED.setBrightness(200); } else { if (prev_beat!=beat) { FastLED.setBrightness(40+beat*beat*5); prev_beat=beat; } } FastLED.show(); if (beat) { counter2+=((beat+4)/2-2); if (counter2<0) {counter2=1000;} if (beat>3 && beat<7) { FastLED.delay (20); } beat=0; } // Serial.println(); } } // Param for different pixel layouts const bool kMatrixSerpentineLayout = false; // Set 'kMatrixSerpentineLayout' to false if your pixels are // laid out all running the same way, like this: // Set 'kMatrixSerpentineLayout' to true if your pixels are // laid out back-and-forth, like this: uint16_t XY( uint8_t x, uint8_t y) { uint16_t i; if( kMatrixSerpentineLayout == false) { i = (y * kMatrixWidth) + x; } if( kMatrixSerpentineLayout == true) { if( y & 0x01) { // Odd rows run backwards uint8_t reverseX = (kMatrixWidth - 1) - x; i = (y * kMatrixWidth) + reverseX; } else { // Even rows run forwards i = (y * kMatrixWidth) + x; } } i=(i+counter2)%NUM_LEDS; return i; }
【Arduino】168种传感器模块系列实验(资料代码+仿真编程+图形编程)
实验一百四十九:MAX9814麦克风放大器模块 MIC话筒声音放大/咪头传感器
项目四十:十六位音乐频谱灯条
实验视频剪辑
https://v.youku.com/v_show/id_XNTgwODYxOTI5Ng==.html?spm=a2hcb.playlsit.page.1