Hadoop2.4.1入门实例:MaxTemperature


注意:以下内容在2.x版本与1.x版本同样适用,已在2.4.1与1.2.0进行测试。

一、前期准备

1、创建伪分布Hadoop环境,请参考官方文档。或者http://blog.csdn.net/jediael_lu/article/details/38637277

2、准备数据文件如下sample.txt:

123456798676231190101234567986762311901012345679867623119010123456798676231190101234561+00121534567890356
123456798676231190101234567986762311901012345679867623119010123456798676231190101234562+01122934567890456
123456798676231190201234567986762311901012345679867623119010123456798676231190101234562+02120234567893456
123456798676231190401234567986762311901012345679867623119010123456798676231190101234561+00321234567803456
123456798676231190101234567986762311902012345679867623119010123456798676231190101234561+00429234567903456
123456798676231190501234567986762311902012345679867623119010123456798676231190101234561+01021134568903456
123456798676231190201234567986762311902012345679867623119010123456798676231190101234561+01124234578903456
123456798676231190301234567986762311905012345679867623119010123456798676231190101234561+04121234678903456
123456798676231190301234567986762311905012345679867623119010123456798676231190101234561+00821235678903456


二、编写代码

1、创建Map

package org.jediael.hadoopDemo.maxtemperature;

import java.io.IOException;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

public class MaxTemperatureMapper extends
		Mapper<LongWritable, Text, Text, IntWritable> {
	private static final int MISSING = 9999;

	@Override
	public void map(LongWritable key, Text value, Context context)
			throws IOException, InterruptedException {
		String line = value.toString();
		String year = line.substring(15, 19);
		int airTemperature;
		if (line.charAt(87) == '+') { // parseInt doesn't like leading plus
										// signs
			airTemperature = Integer.parseInt(line.substring(88, 92));
		} else {
			airTemperature = Integer.parseInt(line.substring(87, 92));
		}
		String quality = line.substring(92, 93);
		if (airTemperature != MISSING && quality.matches("[01459]")) {
			context.write(new Text(year), new IntWritable(airTemperature));
		}
	}
}

2、创建Reduce

package org.jediael.hadoopDemo.maxtemperature;

import java.io.IOException;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

public class MaxTemperatureReducer extends
		Reducer<Text, IntWritable, Text, IntWritable> {
	@Override
	public void reduce(Text key, Iterable<IntWritable> values, Context context)
			throws IOException, InterruptedException {
		int maxValue = Integer.MIN_VALUE;
		for (IntWritable value : values) {
			maxValue = Math.max(maxValue, value.get());
		}
		context.write(key, new IntWritable(maxValue));
	}
}

3、创建main方法

package org.jediael.hadoopDemo.maxtemperature;

import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class MaxTemperature {
	public static void main(String[] args) throws Exception {
		if (args.length != 2) {
			System.err
					.println("Usage: MaxTemperature <input path> <output path>");
			System.exit(-1);
		}
		Job job = new Job();
		job.setJarByClass(MaxTemperature.class);
		job.setJobName("Max temperature");
		FileInputFormat.addInputPath(job, new Path(args[0]));
		FileOutputFormat.setOutputPath(job, new Path(args[1]));
		job.setMapperClass(MaxTemperatureMapper.class);
		job.setReducerClass(MaxTemperatureReducer.class);
		job.setOutputKeyClass(Text.class);
		job.setOutputValueClass(IntWritable.class);
		System.exit(job.waitForCompletion(true) ? 0 : 1);
	}
}

4、导出成MaxTemp.jar,并上传至运行程序的服务器。


三、运行程序

1、创建input目录并将sample.txt复制到input目录

hadoop fs -put sample.txt /

2、运行程序

export HADOOP_CLASSPATH=MaxTemp.jar

 hadoop org.jediael.hadoopDemo.maxtemperature.MaxTemperature /sample.txt output10

注意输出目录不能已经存在,否则会创建失败。

3、查看结果

(1)查看结果

[jediael@jediael44 code]$  hadoop fs -cat output10/*
14/07/09 14:51:35 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
1901    42
1902    212
1903    412
1904    32
1905    102

(2)运行时输出

[jediael@jediael44 code]$  hadoop org.jediael.hadoopDemo.maxtemperature.MaxTemperature /sample.txt output10
14/07/09 14:50:40 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
14/07/09 14:50:41 INFO client.RMProxy: Connecting to ResourceManager at /0.0.0.0:8032
14/07/09 14:50:42 WARN mapreduce.JobSubmitter: Hadoop command-line option parsing not performed. Implement the Tool interface and execute your application with ToolRunner to remedy this.
14/07/09 14:50:43 INFO input.FileInputFormat: Total input paths to process : 1
14/07/09 14:50:43 INFO mapreduce.JobSubmitter: number of splits:1
14/07/09 14:50:44 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1404888618764_0001
14/07/09 14:50:44 INFO impl.YarnClientImpl: Submitted application application_1404888618764_0001
14/07/09 14:50:44 INFO mapreduce.Job: The url to track the job: http://jediael44:8088/proxy/application_1404888618764_0001/
14/07/09 14:50:44 INFO mapreduce.Job: Running job: job_1404888618764_0001
14/07/09 14:50:57 INFO mapreduce.Job: Job job_1404888618764_0001 running in uber mode : false
14/07/09 14:50:57 INFO mapreduce.Job:  map 0% reduce 0%
14/07/09 14:51:05 INFO mapreduce.Job:  map 100% reduce 0%
14/07/09 14:51:15 INFO mapreduce.Job:  map 100% reduce 100%
14/07/09 14:51:15 INFO mapreduce.Job: Job job_1404888618764_0001 completed successfully
14/07/09 14:51:16 INFO mapreduce.Job: Counters: 49
        File System Counters
                FILE: Number of bytes read=94
                FILE: Number of bytes written=185387
                FILE: Number of read operations=0
                FILE: Number of large read operations=0
                FILE: Number of write operations=0
                HDFS: Number of bytes read=1051
                HDFS: Number of bytes written=43
                HDFS: Number of read operations=6
                HDFS: Number of large read operations=0
                HDFS: Number of write operations=2
        Job Counters 
                Launched map tasks=1
                Launched reduce tasks=1
                Data-local map tasks=1
                Total time spent by all maps in occupied slots (ms)=5812
                Total time spent by all reduces in occupied slots (ms)=7023
                Total time spent by all map tasks (ms)=5812
                Total time spent by all reduce tasks (ms)=7023
                Total vcore-seconds taken by all map tasks=5812
                Total vcore-seconds taken by all reduce tasks=7023
                Total megabyte-seconds taken by all map tasks=5951488
                Total megabyte-seconds taken by all reduce tasks=7191552
        Map-Reduce Framework
                Map input records=9
                Map output records=8
                Map output bytes=72
                Map output materialized bytes=94
                Input split bytes=97
                Combine input records=0
                Combine output records=0
                Reduce input groups=5
                Reduce shuffle bytes=94
                Reduce input records=8
                Reduce output records=5
                Spilled Records=16
                Shuffled Maps =1
                Failed Shuffles=0
                Merged Map outputs=1
                GC time elapsed (ms)=154
                CPU time spent (ms)=1450
                Physical memory (bytes) snapshot=303112192
                Virtual memory (bytes) snapshot=1685733376
                Total committed heap usage (bytes)=136515584
        Shuffle Errors
                BAD_ID=0
                CONNECTION=0
                IO_ERROR=0
                WRONG_LENGTH=0
                WRONG_MAP=0
                WRONG_REDUCE=0
        File Input Format Counters 
                Bytes Read=954
        File Output Format Counters 
                Bytes Written=43


posted @ 2014-07-09 13:21  eagleGeek  阅读(162)  评论(0编辑  收藏  举报