Lua 基础
Lua 5.3 的中文手册, http://cloudwu.github.io/lua53doc 在线浏览
--第一部分 -- 两个横线开始单行的注释 --[[ 加上两个[和]表示 多行的注释。 --]] --------------------------------------------------- -- 1. 变量和流控制。 ---------------------------------------------------- num = 42 -- 所有的数字都是double。 -- 别担心,double的64位中有52位用于 -- 保存精确的int值; 对于需要52位以内的int值, -- 机器的精度不是问题。 s = 'walternate' -- 像Python那样的不可变的字符串。 t = "双引号也可以" u = [[ 两个方括号 用于 多行的字符串。]] t = nil -- 未定义的t; Lua 支持垃圾收集。 -- do/end之类的关键字标示出程序块: while num < 50 do num = num + 1 -- 没有 ++ or += 运算符。 end -- If语句: if num > 40 then print('over 40') elseif s ~= 'walternate' then -- ~= 表示不等于。 -- 像Python一样,== 表示等于;适用于字符串。 io.write('not over 40\n') -- 默认输出到stdout。 else -- 默认变量都是全局的。 thisIsGlobal = 5 -- 通常用驼峰式定义变量名。 -- 如何定义局部变量: local line = io.read() -- 读取stdin的下一行。 -- ..操作符用于连接字符串: print('Winter is coming, ' .. line) end -- 未定义的变量返回nil。 -- 这不会出错: foo = anUnknownVariable -- 现在 foo = nil. aBoolValue = false --只有nil和false是fals; 0和 ''都是true! if not aBoolValue then print('twas false') end -- 'or'和 'and'都是可短路的(译者注:如果已足够进行条件判断则不计算后面的条件表达式)。 -- 类似于C/js里的 a?b:c 操作符: ans = aBoolValue and 'yes' or 'no' --> 'no' karlSum = 0 for i = 1, 100 do -- 范围包括两端 karlSum = karlSum + i end -- 使用 "100, 1, -1" 表示递减的范围: fredSum = 0 for j = 100, 1, -1 do fredSum = fredSum + j end -- 通常,范围表达式为begin, end[, step]. -- 另一种循环表达方式: repeat print('the way of the future') num = num - 1 until num == 0 ---------------------------------------------------- -- 2. 函数。 ---------------------------------------------------- function fib(n) if n < 2 then return 1 end return fib(n - 2) + fib(n - 1) end -- 支持闭包及匿名函数: function adder(x) -- 调用adder时,会创建用于返回的函数,并且能记住变量x的值: return function (y) return x + y end end a1 = adder(9) a2 = adder(36) print(a1(16)) --> 25 print(a2(64)) --> 100 -- 返回值、函数调用和赋值都可以使用长度不匹配的list。 -- 不匹配的接收方会被赋为nil; -- 不匹配的发送方会被忽略。 x, y, z = 1, 2, 3, 4 -- 现在x = 1, y = 2, z = 3, 而 4 会被丢弃。 function bar(a, b, c) print(a, b, c) return 4, 8, 15, 16, 23, 42 end x, y = bar('zaphod') --> prints "zaphod nil nil" -- 现在 x = 4, y = 8, 而值15..42被丢弃。 -- 函数是一等公民,可以是局部或者全局的。 -- 下面是等价的: function f(x) return x * x end f = function (x) return x * x end -- 这些也是等价的: local function g(x) return math.sin(x) end local g; g = function (x) return math.sin(x) end -- 'local g'可以支持g自引用。 -- 顺便提一下,三角函数是以弧度为单位的。 -- 用一个字符串参数调用函数,不需要括号: print 'hello' --可以工作。 ---------------------------------------------------- -- 3. Table。 ---------------------------------------------------- -- Table = Lua唯一的数据结构; -- 它们是关联数组。 -- 类似于PHP的数组或者js的对象, -- 它们是哈希查找表(dict),也可以按list去使用。 -- 按字典/map的方式使用Table: -- Dict的迭代默认使用string类型的key: t = {key1 = 'value1', key2 = false} -- String的key可以像js那样用点去引用: print(t.key1) -- 打印 'value1'. t.newKey = {} -- 添加新的 key/value 对。 t.key2 = nil -- 从table删除 key2。 -- 使用任何非nil的值作为key: u = {['@!#'] = 'qbert', [{}] = 1729, [6.28] = 'tau'} print(u[6.28]) -- 打印 "tau" -- 对于数字和字符串的key是按照值来匹配的,但是对于table则是按照id来匹配。 a = u['@!#'] -- 现在 a = 'qbert'. b = u[{}] -- 我们期待的是 1729, 但是得到的是nil: -- b = nil ,因为没有找到。 -- 之所以没找到,是因为我们用的key与保存数据时用的不是同一个对象。 -- 所以字符串和数字是可用性更好的key。 -- 只需要一个table参数的函数调用不需要括号: function h(x) print(x.key1) end h{key1 = 'Sonmi~451'} -- 打印'Sonmi~451'. for key, val in pairs(u) do -- Table 的遍历. print(key, val) end -- _G 是一个特殊的table,用于保存所有的全局变量 print(_G['_G'] == _G) -- 打印'true'. -- 按list/array的方式使用: -- List 的迭代方式隐含会添加int的key: v = {'value1', 'value2', 1.21, 'gigawatts'} for i = 1, #v do -- #v 是list的size print(v[i]) -- 索引从 1 开始!! 太疯狂了! end -- 'list'并非真正的类型,v 还是一个table, -- 只不过它有连续的整数作为key,可以像list那样去使用。 ---------------------------------------------------- -- 3.1 元表(metatable) 和元方法(metamethod)。 ---------------------------------------------------- -- table的元表提供了一种机制,可以重定义table的一些操作。 -- 之后我们会看到元表是如何支持类似js的prototype行为。 f1 = {a = 1, b = 2} -- 表示一个分数 a/b. f2 = {a = 2, b = 3} -- 这个是错误的: -- s = f1 + f2 metafraction = {} function metafraction.__add(f1, f2) sum = {} sum.b = f1.b * f2.b sum.a = f1.a * f2.b + f2.a * f1.b return sum end setmetatable(f1, metafraction) setmetatable(f2, metafraction) s = f1 + f2 -- 调用在f1的元表上的__add(f1, f2) 方法 -- f1, f2 没有能访问它们元表的key,这与prototype不一样, -- 所以你必须用getmetatable(f1)去获得元表。元表是一个普通的table, -- Lua可以通过通常的方式去访问它的key,例如__add。 -- 不过下面的代码是错误的,因为s没有元表: -- t = s + s -- 下面的类形式的模式可以解决这个问题: -- 元表的__index 可以重载点运算符的查找: defaultFavs = {animal = 'gru', food = 'donuts'} myFavs = {food = 'pizza'} setmetatable(myFavs, {__index = defaultFavs}) eatenBy = myFavs.animal -- 可以工作!这要感谢元表的支持 -- 如果在table中直接查找key失败,会使用元表的__index 继续查找,并且是递归的查找 -- __index的值也可以是函数function(tbl, key) ,这样可以支持更多的自定义的查找。 -- __index、__add等等,被称为元方法。 -- 这里是table的元方法的全部清单: -- __add(a, b) for a + b -- __sub(a, b) for a - b -- __mul(a, b) for a * b -- __div(a, b) for a / b -- __mod(a, b) for a % b -- __pow(a, b) for a ^ b -- __unm(a) for -a -- __concat(a, b) for a .. b -- __len(a) for #a -- __eq(a, b) for a == b -- __lt(a, b) for a < b -- __le(a, b) for a <= b -- __index(a, b) <fn or a table> for a.b -- __newindex(a, b, c) for a.b = c -- __call(a, ...) for a(...) --第二部分 ---------------------------------------------------- -- 3.2 类风格的table和继承。 ---------------------------------------------------- -- 类并不是内置的;有不同的方法通过表和元表来实现。 -- 下面是一个例子,后面是对例子的解释 Dog = {} -- 1. function Dog:new() -- 2. newObj = {sound = 'woof'} -- 3. self.__index = self -- 4. return setmetatable(newObj, self) -- 5. end function Dog:makeSound() -- 6. print('I say ' .. self.sound) end mrDog = Dog:new() -- 7. mrDog:makeSound() -- 'I say woof' -- 8. -- 1. Dog看上去像一个类;其实它完全是一个table。 -- 2. 函数tablename:fn(...) 与函数tablename.fn(self, ...) 是一样的 -- 冒号(:)只是添加了self作为第一个参数。 -- 下面的第7和第8条说明了self变量是如何得到其值的。 -- 3. newObj是类Dog的一个实例。 -- 4. self为初始化的类实例。通常self = Dog,不过继承关系可以改变这个。 -- 如果把newObj的元表和__index都设置为self, -- newObj就可以得到self的函数。 -- 5. 记住:setmetatable返回其第一个参数。 -- 6. 冒号(:)在第2条是工作的,不过这里我们期望 -- self是一个实例,而不是类 -- 7. 与Dog.new(Dog)类似,所以 self = Dog in new()。 -- 8. 与mrDog.makeSound(mrDog)一样; self = mrDog。 ---------------------------------------------------- -- 继承的例子: LoudDog = Dog:new() -- 1. function LoudDog:makeSound() s = self.sound .. ' ' -- 2. print(s .. s .. s) end seymour = LoudDog:new() -- 3. seymour:makeSound() -- 'woof woof woof' -- 4. -- 1. LoudDog获得Dog的方法和变量列表。 -- 2. 通过new(),self有一个'sound'的key from new(),参见第3条。 -- 3. 与LoudDog.new(LoudDog)一样,并且被转换成 -- Dog.new(LoudDog),因为LoudDog没有'new' 的key, -- 不过在它的元表可以看到 __index = Dog。 -- 结果: seymour的元表是LoudDog,并且 -- LoudDog.__index = LoudDog。所以有seymour.key -- = seymour.key, LoudDog.key, Dog.key, 要看 -- 针对给定的key哪一个table排在前面。 -- 4. 在LoudDog可以找到'makeSound'的key;这与 -- LoudDog.makeSound(seymour)一样。 -- 如果需要,子类也可以有new(),与基类的类似: function LoudDog:new() newObj = {} -- 初始化newObj self.__index = self return setmetatable(newObj, self) end ---------------------------------------------------- -- 4. 模块 ---------------------------------------------------- --[[ 我把这部分给注释了,这样脚本剩下的部分就可以运行了 -- 假设文件mod.lua的内容是: local M = {} local function sayMyName() print('Hrunkner') end function M.sayHello() print('Why hello there') sayMyName() end return M -- 另一个文件也可以使用mod.lua的函数: local mod = require('mod') -- 运行文件mod.lua. -- require是包含模块的标准做法。 -- require等价于: (针对没有被缓存的情况;参加后面的内容) local mod = (function () <contents of mod.lua> end)() -- mod.lua就好像一个函数体,所以mod.lua的局部变量对外是不可见的。 -- 下面的代码是工作的,因为在mod.lua中mod = M: mod.sayHello() -- Says hello to Hrunkner. -- 这是错误的;sayMyName只在mod.lua中存在: mod.sayMyName() -- 错误 -- require返回的值会被缓存,所以一个文件只会被运行一次, -- 即使它被require了多次。 -- 假设mod2.lua包含代码"print('Hi!')"。 local a = require('mod2') -- 打印Hi! local b = require('mod2') -- 不再打印; a=b. -- dofile与require类似,只是不做缓存: dofile('mod2') --> Hi! dofile('mod2') --> Hi! (再次运行,与require不同) -- loadfile加载一个lua文件,但是并不允许它。 f = loadfile('mod2') -- Calling f() runs mod2.lua. -- loadstring是loadfile的字符串版本。 g = loadstring('print(343)') --返回一个函数。 g() -- 打印343; 在此之前什么也不打印。 --]]
Lua基础用法,(转)