传统弱校HFUT的蒟蒻,真相只有一个

HDU 3999 二叉排序树

 

The order of a Tree

Problem Description
The shape of a binary search tree is greatly related to the order of keys we insert. To be precisely:
1.  insert a key k to a empty tree, then the tree become a tree with
  only one node;
2.  insert a key k to a nonempty tree, if k is less than the root ,insert
  it to the left sub-tree;else insert k to the right sub-tree.
  We call the order of keys we insert “the order of a tree”,your task is,given a oder of a tree, find the order of a tree with the least lexicographic order that generate                           the same tree.Two trees are the same if and only if they have the same shape.
 
Input
There are multiple test cases in an input file. The first line of each testcase is an integer n(n <= 100,000),represent the number of nodes.The second line has n intergers,k1 to kn,represent the order of a tree.To make if more simple, k1 to kn is a sequence of 1 to n.
 
Output
One line with n intergers, which are the order of a tree that generate the same tree with the least lexicographic.
 
Sample Input
4
1 3 4 2
 
Sample Output
1 3 2 4
 
二叉排序树如何建立和遍历是关键。
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
int ld[100010],rd[100010],a,num,root,i;
void build(int root,int al)
{
    if(al>root)
    {
        if(rd[root]==-1)
        {
            rd[root]=al;
            //cout<<"al:"<<al<<" r root:"<<root<<endl;
        }
        else build(rd[root],al);
    }
    else
    {
        if(ld[root]==-1)
        {
            ld[root]=al;
            //cout<<"al:"<<al<<" l root:"<<root<<endl;
        }
        else build(ld[root],al);
    }
}

void solve(int root)
{
    if(ld[root]!=-1)
    {
        cout<<" "<<ld[root];
        solve(ld[root]);
    }
    if(rd[root]!=-1)
    {
        cout<<" "<<rd[root];
        solve(rd[root]);
    }
    else return;
}

int main()
{
    while(~scanf("%d",&num))
    {
        memset(ld,-1,sizeof(ld));
        memset(rd,-1,sizeof(rd));
        for(i=1;i<=num;i++)
        {
            scanf("%d",&a);
            if(i==1){root=a;}
            else build(root,a);
        }
        cout<<root;
        solve(root);
        cout<<endl;
    }
    return 0;
}
View Code

 

posted @ 2015-12-23 19:42  未名亚柳  阅读(287)  评论(0编辑  收藏  举报