传统弱校HFUT的蒟蒻,真相只有一个

扩展欧几里德

欧几里德算法

欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数。

基本算法:设a=qb+r,其中a,b,q,r都是整数,则gcd(a,b)=gcd(b,r),即gcd(a,b)=gcd(b,a%b)。

第一种证明:

      a可以表示成a = kb + r,则r = a mod b

  假设d是a,b的一个公约数,则有

  d|a, d|b,而r = a - kb,因此d|r

  因此d是(b,a mod b)的公约数

  假设d 是(b,a mod b)的公约数,则

  d | b , d |r ,但是a = kb +r

  因此d也是(a,b)的公约数

  因此(a,b)和(b,a mod b)的公约数是一样的,其最大公约数也必然相等,得证

 

第二种证明:

    要证欧几里德算法成立,即证: gcd(a,b)=gcd(b,r),其中 gcd是取最大公约数的意思,r=a mod b     下面证 gcd(a,b)=gcd(b,r)     设  c是a,b的最大公约数,即c=gcd(a,b),则有 a=mc,b=nc,其中m,n为正整数,且m,n互为质数     由 r= a mod b可知,r= a- qb 其中,q是正整数,     则 r=a-qb=mc-qnc=(m-qn)c     b=nc,r=(m-qn)c,且n,(m-qn)互质(假设n,m-qn不互质,则n=xd, m-qn=yd 其中x,y,d都是正整数,且d>1                                                                 则a=mc=(qx+y)dc, b=xdc,这时a,b 的最大公约数变成dc,与前提矛盾,                                                                  所以n ,m-qn一定互质)     则gcd(b,r)=c=gcd(a,b)     得证。

 

算法的实现:

最简单的方法就是应用递归算法,代码如下:

View Code 1 int gcd(int a,int b) 2 { 3     if(b==0) 4         return a; 5     return 6         gcd(b,a%b); 7 }

代码可优化如下:

View Code 1 int gcd(int a,int b) 2 { 3     return b ? gcd(b,a%b) : a; 4 }

当然你也可以用迭代形式:

View Code  1 int Gcd(int a, int b)  2 {  3     while(b != 0)  4     {  5       int r = b;  6       b = a % b;  7       a = r;  8     }  9     return a; 10 }

 

扩展欧几里德算法

基本算法:对于不完全为 0 的非负整数 a,b,gcd(a,b)表示 a,b 的最大公约数,必然存在整数对 x,y ,使得 gcd(a,b)=ax+by。

证明:设 a>b。

  1,显然当 b=0,gcd(a,b)=a。此时 x=1,y=0;

  2,ab!=0 时

  设 ax1+by1=gcd(a,b);

  bx2+(a mod b)y2=gcd(b,a mod b);

  根据朴素的欧几里德原理有 gcd(a,b)=gcd(b,a mod b);

  则:ax1+by1=bx2+(a mod b)y2;

  即:ax1+by1=bx2+(a-(a/b)*b)y2=ay2+bx2-(a/b)*by2;

  根据恒等定理得:x1=y2; y1=x2-(a/b)*y2;

     这样我们就得到了求解 x1,y1 的方法:x1,y1 的值基于 x2,y2.

   上面的思想是以递归定义的,因为 gcd 不断的递归求解一定会有个时候 b=0,所以递归可以结束。

 

扩展欧几里德的递归代码:

View Code  1 int exgcd(int a,int b,int &x,int &y)  2 {  3     if(b==0)  4     {  5         x=1;  6         y=0;  7         return a;  8     }  9     int r=exgcd(b,a%b,x,y); 10     int t=x; 11     x=y; 12     y=t-a/b*y; 13     return r; 14 }

 扩展欧几里德非递归代码:

View Code  1 int exgcd(int m,int n,int &x,int &y)  2 {  3     int x1,y1,x0,y0;  4     x0=1; y0=0;  5     x1=0; y1=1;  6     x=0; y=1;  7     int r=m%n;  8     int q=(m-r)/n;  9     while(r) 10     { 11         x=x0-q*x1; y=y0-q*y1; 12         x0=x1; y0=y1; 13         x1=x; y1=y; 14         m=n; n=r; r=m%n; 15         q=(m-r)/n; 16     } 17     return n; 18 }

 

扩展欧几里德算法的应用主要有以下三方面:

(1)求解不定方程;

(2)求解模线性方程(线性同余方程);

(3)求解模的逆元;

 

(1)使用扩展欧几里德算法解决不定方程的办法:

  对于不定整数方程pa+qb=c,若 c mod Gcd(p, q)=0,则该方程存在整数解,否则不存在整数解。   上面已经列出找一个整数解的方法,在找到p * a+q * b = Gcd(p, q)的一组解p0,q0后,p * a+q * b = Gcd(p, q)的其他整数解满足:   p = p0 + b/Gcd(p, q) * t   q = q0 - a/Gcd(p, q) * t(其中t为任意整数)   至于pa+qb=c的整数解,只需将p * a+q * b = Gcd(p, q)的每个解乘上 c/Gcd(p, q) 即可。

  在找到p * a+q * b = Gcd(a, b)的一组解p0,q0后,应该是得到p * a+q * b = c的一组解p1 = p0*(c/Gcd(a,b)),q1 = q0*(c/Gcd(a,b)),

  p * a+q * b = c的其他整数解满足:

  p = p1 + b/Gcd(a, b) * t

  q = q1 - a/Gcd(a, b) * t(其中t为任意整数)

  p 、q就是p * a+q * b = c的所有整数解。

相关证明可参考:http://www.cnblogs.com/void/archive/2011/04/18/2020357.html

 

用扩展欧几里得算法解不定方程ax+by=c;

代码如下:

View Code 1 bool linear_equation(int a,int b,int c,int &x,int &y) 2 { 3     int d=exgcd(a,b,x,y); 4     if(c%d) 5         return false; 6     int k=c/d; 7     x*=k; y*=k;    //求得的只是其中一组解 8     return true; 9 }

 

(2)用扩展欧几里德算法求解模线性方程的方法:

    同余方程 ax≡b (mod n)对于未知数 x 有解,当且仅当 gcd(a,n) | b。且方程有解时,方程有 gcd(a,n) 个解。

    求解方程 ax≡b (mod n) 相当于求解方程 ax+ ny= b, (x, y为整数)

    设 d= gcd(a,n),假如整数 x 和 y,满足 d= ax+ ny(用扩展欧几里德得出)。如果 d| b,则方程

    a* x0+ n* y0= d, 方程两边乘以 b/ d,(因为 d|b,所以能够整除),得到 a* x0* b/ d+ n* y0* b/ d= b。     所以 x= x0* b/ d,y= y0* b/ d 为 ax+ ny= b 的一个解,所以 x= x0* b/ d 为 ax= b (mod n ) 的解。

    ax≡b (mod n)的一个解为 x0= x* (b/ d ) mod n,且方程的 d 个解分别为 xi= (x0+ i* (n/ d ))mod n {i= 0... d-1}。

    设ans=x*(b/d),s=n/d;

    方程ax≡b (mod n)的最小整数解为:(ans%s+s)%s;

    相关证明:

    证明方程有一解是: x0 = x'(b/d) mod n;     由 a*x0 = a*x'(b/d) (mod n)          a*x0 = d (b/d) (mod n)   (由于 ax' = d (mod n))                  = b (mod n)

    证明方程有d个解: xi = x0 + i*(n/d)  (mod n);     由 a*xi (mod n) = a * (x0 + i*(n/d)) (mod n)                              = (a*x0+a*i*(n/d)) (mod n)                              = a * x0 (mod n)             (由于 d | a)                              = b

    

首先看一个简单的例子:

5x=4(mod3)

解得x = 2,5,8,11,14.......

由此可以发现一个规律,就是解的间隔是3.

那么这个解的间隔是怎么决定的呢?

如果可以设法找到第一个解,并且求出解之间的间隔,那么就可以求出模的线性方程的解集了.

我们设解之间的间隔为dx.

那么有

a*x = b(mod n);

a*(x+dx) = b(mod n);

两式相减,得到:

a*dx(mod n)= 0;

也就是说a*dx就是a的倍数,同时也是n的倍数,即a*dx是a 和 n的公倍数.为了求出dx,我们应该求出a 和 n的最小公倍数,此时对应的dx是最小的.

设a 和 n的最大公约数为d,那么a 和 n 的最小公倍数为(a*n)/d.

即a*dx = a*n/d;

所以dx = n/d.

因此解之间的间隔就求出来了.

    代码如下:

View Code  1 bool modular_linear_equation(int a,int b,int n)  2 {  3     int x,y,x0,i;  4     int d=exgcd(a,n,x,y);  5     if(b%d)  6         return false;  7     x0=x*(b/d)%n;   //特解  8     for(i=1;i<d;i++)  9         printf("%d\n",(x0+i*(n/d))%n); 10     return true; 11 }

 

(3)用欧几里德算法求模的逆元:

       同余方程ax≡b (mod n),如果 gcd(a,n)== 1,则方程只有唯一解。

      在这种情况下,如果 b== 1,同余方程就是 ax=1 (mod n ),gcd(a,n)= 1。

      这时称求出的 x 为 a 的对模 n 乘法的逆元。

      对于同余方程 ax= 1(mod n ), gcd(a,n)= 1 的求解就是求解方程

      ax+ ny= 1,x, y 为整数。这个可用扩展欧几里德算法求出,原同余方程的唯一解就是用扩展欧几里德算法得出的 x 。

注:本文转来的。

posted @ 2015-09-12 20:19  未名亚柳  阅读(165)  评论(0编辑  收藏  举报