导航

1.定义残差类

         基于自动求导的核心是定义残差类。

         说到要定义一个类,感觉是要实现很复杂的功能,而实际上该类就实现一个功能,即实现残差模型。

         必须在残差类中重截operator()实现残差模型,很多时候,残差类也就这么一个成员,无需再添加其它成员,就能实现残差模型。

         如何实现残差类取决于残差模型,反映在代码实现上,就是如何实现operator(),operator()的形式如下:

         template <typename tp> bool operator()(const tp * const param1,…, const tp * const param9, tp *residual) const {…}

         (1)以上给出的是十个参数的operator(),可根据实际情况选择参数个数,最少两个,最多十个。

         (2)最后一个参数residual是必须的,它用于保存计算的残差值,其维度等于残差项的个数。

         (3)前九个参数可根据实际需求裁剪,但至少一个。当被优化的所有参数可以归为一组时,就只需要一个;当被优化的参数需要被分为多组时,则需要多个。

    定义多少个残差类取决于具体业务模型,但不外乎也就以下几种情况:

         (1)定义一个残差类,这个残差类实现所有残差模型,耦合性强,不推荐。

         (2)定义多个残差类,某些残差类实现多个残差模型,耦合性强,不推荐。

         (3)定义多个残差类,每个残差类实现一个残差模型,每个残差模型实现所有时刻采集的数据,扩展性差,不推荐。

         (4)定义多个残差类,每个残差类实现一个残差模型,每个残差模型实现单个时刻采集的数据,扩展性好,最实用。 

         这里之所以还区分每个时刻,是因为对于某些业务,尽管残差模型一样,但在不同时刻采集数据,部分模型参数值(真值)不一样,所以给定的初值和被优化后的最优值不一样,如VSLAM中基于不同位置的观察数据来计算每次观察时的位姿和相机内参。

2.使用残差类

         在决定了operator()的形式后,也就决定了微分类CostFunction和Problem::AddResidualBlock的使用形式。

         以AutoDiffCostFunction为例,其形式如下:

         AutoDiffCostFunction<Functor, int M, int N0=0, int N1=0, int N2=0, int N3=0, int N4=0, int N5=0, …, int N9=0>

         (1)第一个模板参数Functor就是定义好的残差类。

         (2)第二个模板参数表示残差项的个数,若运行时才能确定则用ceres::DYNMIC。

         (3)第三个及之后的模板参数,表示被优化的每组参数中包含的参数个数,即与operator()中参数对应,假设param2包含k个参数,则N2=k。

         Problem::AddResidualBlock的形式如下:

         Problem::AddResidualBlock(costfunction, lossfunction, param1,…param9)

         Problem::AddResidualBlock(costfunction, lossfunction, vectorparam)

         (1)前两个参数分别是微分模型和损失函数模型。

         (2)之后的九个参数具体要多少个,与operator()对应,也可以用std::vector合为一个参数后传进去。

3.使用样例

         提供两个使用样例,封装为两个类:

         OptimizeRt:基于单次观察,优化此次观察的外参,定义了ProjectionModelRt类。

         OptimizeKDRt:基于多次观察,优化相机内参和所有观察的外参,定义了ProjectionModelKDRt类。

         其中类MotionSim用于生成仿真数据,使用说明参见《CV学习日志:CV开发之三维仿真器》。

         存在可能不收敛的测试结果,属于正常现象,可修改初值精度来增加收敛性。

         以下是详细代码,依赖于C++14、OpenCV4.x、Ceres和Spdlog。

  1 #include <opencv2/opencv.hpp>
  2 #include <opencv2/viz.hpp>
  3 #include <spdlog/spdlog.h>
  4 #include <ceres/ceres.h>
  5 using namespace std;
  6 using namespace cv;
  7 
  8 class MotionSim
  9 {
 10 public:
 11     static void TestMe(int argc, char** argv)
 12     {
 13         MotionSim motionSim(false);
 14         motionSim.camFovX = 45;
 15         motionSim.camFovY = 30;
 16         motionSim.camRand = 10;
 17         motionSim.enableVerbose = false;
 18         motionSim.runMotion(false, false, 7);
 19         motionSim.visMotion();
 20     }
 21 
 22 public:
 23     struct MotionView
 24     {
 25         Mat_<double> r = Mat_<double>(3, 1);
 26         Mat_<double> t = Mat_<double>(3, 1);
 27         Mat_<double> q = Mat_<double>(4, 1);
 28         Mat_<double> rt = Mat_<double>(6, 1);
 29         Mat_<double> radian = Mat_<double>(3, 1);
 30         Mat_<double> degree = Mat_<double>(3, 1);
 31         Mat_<double> R = Mat_<double>(3, 3);
 32         Mat_<double> T = Mat_<double>(3, 4);
 33         Mat_<double> K;
 34         Mat_<double> D;
 35         Mat_<Vec3d> point3D;
 36         Mat_<Vec2d> point2D;
 37         Mat_<int> point3DIds;
 38         string print(string savePath = "")
 39         {
 40             string str;
 41             str += fmt::format("r: {}\n", cvarr2str(r.t()));
 42             str += fmt::format("t: {}\n", cvarr2str(t.t()));
 43             str += fmt::format("q: {}\n", cvarr2str(q.t()));
 44             str += fmt::format("rt: {}\n", cvarr2str(rt.t()));
 45             str += fmt::format("radian: {}\n", cvarr2str(radian.t()));
 46             str += fmt::format("degree: {}\n", cvarr2str(degree.t()));
 47             str += fmt::format("R: {}\n", cvarr2str(R));
 48             str += fmt::format("T: {}\n", cvarr2str(T));
 49             str += fmt::format("K: {}\n", cvarr2str(K));
 50             str += fmt::format("D: {}\n", cvarr2str(D.t()));
 51             if (savePath.empty() == false) { FILE* out = fopen(savePath.c_str(), "w"); fprintf(out, str.c_str()); fclose(out); }
 52             return str;
 53         }
 54     };
 55     static string cvarr2str(InputArray v)
 56     {
 57         Ptr<Formatted> fmtd = cv::format(v, Formatter::FMT_DEFAULT);
 58         string dst; fmtd->reset();
 59         for (const char* str = fmtd->next(); str; str = fmtd->next()) dst += string(str);
 60         return dst;
 61     }
 62     static void euler2matrix(double e[3], double R[9], bool forward = true, int argc = 0, char** argv = 0)
 63     {
 64         if (argc > 0)
 65         {
 66             int N = 999;
 67             for (int k = 0; k < N; ++k)//OpenCV not better than DIY
 68             {
 69                 //1.GenerateData
 70                 Matx31d radian0 = radian0.randu(-3.14159265358979323846, 3.14159265358979323846);
 71                 Matx33d R; euler2matrix(radian0.val, R.val, true);
 72                 const double deg2rad = 3.14159265358979323846 * 0.0055555555555555556;
 73                 const double rad2deg = 180 * 0.3183098861837906715;
 74 
 75                 //2.CalcByOpenCV
 76                 Matx31d radian1 = cv::RQDecomp3x3(R, Matx33d(), Matx33d()) * deg2rad;
 77 
 78                 //3.CalcByDIY
 79                 Matx31d radian2; euler2matrix(R.val, radian2.val, false);
 80 
 81                 //4.AnalyzeError
 82                 double infRadian0Radian1 = norm(radian0, radian1, NORM_INF);
 83                 double infRadian1Radian2 = norm(radian1, radian2, NORM_INF);
 84 
 85                 //5.PrintError
 86                 cout << endl << "LoopCount: " << k << endl;
 87                 if (infRadian0Radian1 > 0 || infRadian1Radian2 > 0)
 88                 {
 89                     cout << endl << "5.1PrintError" << endl;
 90                     cout << endl << "infRadian0Radian1: " << infRadian0Radian1 << endl;
 91                     cout << endl << "infRadian1Radian2: " << infRadian1Radian2 << endl;
 92                     if (0)
 93                     {
 94                         cout << endl << "5.2PrintDiff" << endl;
 95                         cout << endl << "radian0-degree0:" << endl << radian0.t() << endl << radian0.t() * rad2deg << endl;
 96                         cout << endl << "radian1-degree1:" << endl << radian1.t() << endl << radian1.t() * rad2deg << endl;
 97                         cout << endl << "radian2-degree2:" << endl << radian2.t() << endl << radian2.t() * rad2deg << endl;
 98                         cout << endl << "5.3PrintOthers" << endl;
 99                         cout << endl << "R:" << endl << R << endl;
100                     }
101                     cout << endl << "Press any key to continue" << endl; std::getchar();
102                 }
103             }
104             return;
105         }
106         if (forward)//check with 3D Rotation Converter
107         {
108             double sinR = std::sin(e[0]);
109             double sinP = std::sin(e[1]);
110             double sinY = std::sin(e[2]);
111             double cosR = std::cos(e[0]);
112             double cosP = std::cos(e[1]);
113             double cosY = std::cos(e[2]);
114 
115             //RPY indicates: first Yaw aroundZ, second Pitch aroundY, third Roll aroundX
116             R[0] = cosY * cosP; R[1] = cosY * sinP * sinR - sinY * cosR; R[2] = cosY * sinP * cosR + sinY * sinR;
117             R[3] = sinY * cosP; R[4] = sinY * sinP * sinR + cosY * cosR; R[5] = sinY * sinP * cosR - cosY * sinR;
118             R[6] = -sinP;       R[7] = cosP * sinR;                      R[8] = cosP * cosR;
119         }
120         else
121         {
122             double vs1 = std::abs(R[6] - 1.);
123             double vs_1 = std::abs(R[6] + 1.);
124             if (vs1 > 1E-9 && vs_1 > 1E-9)
125             {
126                 e[2] = std::atan2(R[3], R[0]); //Yaw aroundZ
127                 e[1] = std::asin(-R[6]);//Pitch aroundY
128                 e[0] = std::atan2(R[7], R[8]); //Roll aroundX
129             }
130             else if (vs_1 <= 1E-9)
131             {
132                 e[2] = 0; //Yaw aroundZ
133                 e[1] = 3.14159265358979323846 * 0.5;//Pitch aroundY
134                 e[0] = e[2] + atan2(R[1], R[2]); //Roll aroundX
135             }
136             else
137             {
138                 e[2] = 0; //Yaw aroundZ
139                 e[1] = -3.14159265358979323846 * 0.5;//Pitch aroundY
140                 e[0] = -e[2] + atan2(-R[1], -R[2]); //Roll aroundX
141             }
142         }
143     };
144     static void quat2matrix(double q[4], double R[9], bool forward = true)
145     {
146         if (forward)//refer to qglviwer
147         {
148             double L1 = std::sqrt(q[0] * q[0] + q[1] * q[1] + q[2] * q[2] + q[3] * q[3]);
149             if (std::abs(L1 - 1) > 1E-9) { std::printf("Not uint quaternion: NormQ=%.9f\n", L1); abort(); }
150 
151             double xx = 2.0 * q[1] * q[1];
152             double yy = 2.0 * q[2] * q[2];
153             double zz = 2.0 * q[3] * q[3];
154 
155             double xy = 2.0 * q[1] * q[2];
156             double xz = 2.0 * q[1] * q[3];
157             double wx = 2.0 * q[1] * q[0];
158 
159             double yz = 2.0 * q[2] * q[3];
160             double wy = 2.0 * q[2] * q[0];
161 
162             double wz = 2.0 * q[3] * q[0];
163 
164             R[0] = 1.0 - yy - zz;
165             R[4] = 1.0 - xx - zz;
166             R[8] = 1.0 - xx - yy;
167 
168             R[1] = xy - wz;
169             R[3] = xy + wz;
170 
171             R[2] = xz + wy;
172             R[6] = xz - wy;
173 
174             R[5] = yz - wx;
175             R[7] = yz + wx;
176         }
177         else
178         {
179             double onePlusTrace = 1.0 + R[0] + R[4] + R[8];// Compute one plus the trace of the matrix
180             if (onePlusTrace > 1E-9)
181             {
182                 double s = sqrt(onePlusTrace) * 2.0;
183                 double is = 1 / s;
184                 q[0] = 0.25 * s;
185                 q[1] = (R[7] - R[5]) * is;
186                 q[2] = (R[2] - R[6]) * is;
187                 q[3] = (R[3] - R[1]) * is;
188             }
189             else
190             {
191                 std::printf("1+trace(R)=%.9f is too small and (R11,R22,R33)=(%.9f,%.9f,%.9f)\n", onePlusTrace, R[0], R[4], R[8]);
192                 if ((R[0] > R[4]) && (R[0] > R[8]))//max(R00, R11, R22)=R00
193                 {
194                     double s = sqrt(1.0 + R[0] - R[4] - R[8]) * 2.0;
195                     double is = 1 / s;
196                     q[0] = (R[5] - R[7]) * is;
197                     q[1] = 0.25 * s;
198                     q[2] = (R[1] + R[3]) * is;
199                     q[3] = (R[2] + R[6]) * is;
200                 }
201                 else if (R[4] > R[8])//max(R00, R11, R22)=R11
202                 {
203                     double s = sqrt(1.0 - R[0] + R[4] - R[8]) * 2.0;
204                     double is = 1 / s;
205                     q[0] = (R[2] - R[6]) * is;
206                     q[1] = (R[1] + R[3]) * is;
207                     q[2] = 0.25 * s;
208                     q[3] = (R[5] + R[7]) * is;
209                 }
210                 else//max(R00, R11, R22)=R22
211                 {
212                     double s = sqrt(1.0 - R[0] - R[4] + R[8]) * 2.0;
213                     double is = 1 / s;
214                     q[0] = (R[1] - R[3]) * is;
215                     q[1] = (R[2] + R[6]) * is;
216                     q[2] = (R[5] + R[7]) * is;
217                     q[3] = 0.25 * s;
218                 }
219             }
220             double L1 = std::sqrt(q[0] * q[0] + q[1] * q[1] + q[2] * q[2] + q[3] * q[3]);
221             if (L1 < 1e-9) { std::printf("Wrong rotation matrix: NormQ=%.9f\n", L1); abort(); }
222             else { L1 = 1 / L1; q[0] *= L1; q[1] *= L1; q[2] *= L1; q[3] *= L1; }
223         }
224     }
225     static void vec2quat(double r[3], double q[4], bool forward = true)
226     {
227         if (forward)//refer to qglviwer
228         {
229             double theta = std::sqrt(r[0] * r[0] + r[1] * r[1] + r[2] * r[2]);
230             if (std::abs(theta) < 1E-9)
231             {
232                 q[0] = 1; q[1] = q[2] = q[3] = 0;
233                 std::printf("Rotation approximates zero: Theta=%.9f\n", theta);
234             };
235 
236             q[0] = std::cos(theta * 0.5);
237             double ss = std::sin(theta * 0.5) / theta;
238             q[1] = r[0] * ss;
239             q[2] = r[1] * ss;
240             q[3] = r[2] * ss;
241         }
242         else
243         {
244             double L1 = std::sqrt(q[0] * q[0] + q[1] * q[1] + q[2] * q[2] + q[3] * q[3]);
245             if (std::abs(L1 - 1) > 1E-9) { std::printf("Not uint quaternion: NormQ=%.9f\n", L1); abort(); }
246 
247             double theta = 2 * acos(q[0]);
248             if (theta > 3.14159265358979323846) theta = 2 * 3.14159265358979323846 - theta;
249             double thetaEx = theta / std::sin(theta * 0.5);
250             r[0] = q[1] * thetaEx;
251             r[1] = q[2] * thetaEx;
252             r[2] = q[3] * thetaEx;
253         }
254     }
255     static void vec2matrix(double r[3], double R[9], bool forward = true, int argc = 0, char** argv = 0)
256     {
257         if (argc > 0)
258         {
259             int N = 999;
260             for (int k = 0; k < N; ++k) //refer to the subsequent article for more details
261             {
262                 //1.GenerateData
263                 Matx31d r0 = r0.randu(-999, 999);
264                 Matx33d R0; cv::Rodrigues(r0, R0);
265 
266                 //2.CalcByOpenCV
267                 Matx33d R1;
268                 Matx31d r1;
269                 cv::Rodrigues(r0, R1);
270                 cv::Rodrigues(R0, r1);
271 
272                 //3.CalcByDIY
273                 Matx33d R2;
274                 Matx31d r2;
275                 vec2matrix(r0.val, R2.val, true);
276                 vec2matrix(r2.val, R0.val, false);
277 
278                 //4.AnalyzeError
279                 double infR1R2 = norm(R1, R2, NORM_INF);
280                 double infr1r2 = norm(r1, r2, NORM_INF);
281 
282                 //5.PrintError
283                 cout << endl << "LoopCount: " << k << endl;
284                 if (infR1R2 > 1E-12 || infr1r2 > 1E-12)
285                 {
286                     cout << endl << "5.1PrintError" << endl;
287                     cout << endl << "infR1R2: " << infR1R2 << endl;
288                     cout << endl << "infr1r2: " << infr1r2 << endl;
289                     if (0)
290                     {
291                         cout << endl << "5.2PrintDiff" << endl;
292                         cout << endl << "R1: " << endl << R1 << endl;
293                         cout << endl << "R2: " << endl << R2 << endl;
294                         cout << endl;
295                         cout << endl << "r1: " << endl << r1.t() << endl;
296                         cout << endl << "r2: " << endl << r2.t() << endl;
297                         cout << endl << "5.3PrintOthers" << endl;
298                     }
299                     cout << endl << "Press any key to continue" << endl; std::getchar();
300                 }
301             }
302             return;
303         }
304 
305         if (forward)
306         {
307             double theta = std::sqrt(r[0] * r[0] + r[1] * r[1] + r[2] * r[2]);
308             if (theta < 1E-9)
309             {
310                 R[0] = R[4] = R[8] = 1.0;
311                 R[1] = R[2] = R[3] = R[5] = R[6] = R[7] = 0.0;
312                 std::printf("Rotation approximates zero: Theta=%.9f\n", theta);
313                 return;
314             }
315             double cs = cos(theta);
316             double sn = sin(theta);
317             double itheta = 1. / theta;
318             double cs1 = 1 - cs;
319             double nx = r[0] * itheta;
320             double ny = r[1] * itheta;
321             double nz = r[2] * itheta;
322 
323             double nxnx = nx * nx, nyny = ny * ny, nznz = nz * nz;
324             double nxny = nx * ny, nxnz = nx * nz, nynz = ny * nz;
325             double nxsn = nx * sn, nysn = ny * sn, nzsn = nz * sn;
326 
327             R[0] = nxnx * cs1 + cs;
328             R[3] = nxny * cs1 + nzsn;
329             R[6] = nxnz * cs1 - nysn;
330 
331             R[1] = nxny * cs1 - nzsn;
332             R[4] = nyny * cs1 + cs;
333             R[7] = nynz * cs1 + nxsn;
334 
335             R[2] = nxnz * cs1 + nysn;
336             R[5] = nynz * cs1 - nxsn;
337             R[8] = nznz * cs1 + cs;
338 
339             if (0)
340             {
341                 Mat_<double> dRdu({ 9, 4 }, {
342                     2 * nx * cs1, 0, 0, (nxnx - 1) * sn,
343                     ny * cs1, nx * cs1, -sn, nxny * sn - nz * cs,
344                     nz * cs1, sn, nx * cs1, nxnz * sn + ny * cs,
345                     ny * cs1, nx * cs1, sn, nxny * sn + nz * cs,
346                     0, 2 * ny * cs1, 0, (nyny - 1) * sn,
347                     -sn, nz * cs1, ny * cs1, nynz * sn - nx * cs,
348                     nz * cs1, -sn, nx * cs1, nxnz * sn - ny * cs,
349                     sn, nz * cs1, ny * cs1, nynz * sn + nx * cs,
350                     0, 0, 2 * nz * cs1, (nznz - 1) * sn });
351 
352                 Mat_<double> dudv({ 4, 4 }, {
353                     itheta, 0, 0, -nx * itheta,
354                     0, itheta, 0, -ny * itheta,
355                     0, 0, itheta, -nz * itheta,
356                     0, 0, 0, 1 });
357 
358                 Mat_<double> dvdr({ 4, 3 }, {
359                     1, 0, 0,
360                     0, 1, 0,
361                     0, 0, 1,
362                     nx, ny, nz });
363 
364                 Mat_<double> Jacobian = dRdu * dudv * dvdr;//rows=9 cols=3
365             }
366         }
367         else
368         {
369             double sx = R[7] - R[5];
370             double sy = R[2] - R[6];
371             double sz = R[3] - R[1];
372             double sn = sqrt(sx * sx + sy * sy + sz * sz) * 0.5;
373             double cs = (R[0] + R[4] + R[8] - 1) * 0.5;
374             double theta = acos(cs);
375             double ss = 2 * sn;
376             double iss = 1. / ss;
377             double tss = theta * iss;
378             r[0] = tss * sx;
379             r[1] = tss * sy;
380             r[2] = tss * sz;
381 
382             if (0)
383             {
384                 Mat_<double> drdu({ 3, 4 }, {
385                     tss, 0, 0, (sn - theta * cs) * iss * iss * sx * 2,
386                     0, tss, 0, (sn - theta * cs) * iss * iss * sy * 2,
387                     0, 0, tss, (sn - theta * cs) * iss * iss * sz * 2 });
388 
389                 Mat_<double> dudR({ 4, 9 }, {
390                     0, 0, 0, 0, 0, -1, 0, 1, 0,
391                     0, 0, 1, 0, 0, 0, -1, 0, 0,
392                     0, -1, 0, 1, 0, 0, 0, 0, 0,
393                     -iss, 0, 0, 0, -iss, 0, 0, 0, -iss });
394 
395                 Mat_<double> Jacobian = drdu * dudR;//rows=3 cols=9
396             }
397         }
398     }
399 
400 private:
401     const int nHorPoint3D = 100;
402     const int nVerPoint3D = 100;
403     const double varPoint3DXY = 10.;
404     const double minPoint3DZ = 1.;
405     const double maxPoint3DZ = 99.;
406     const double minCamZ = 101.;
407     const double maxCamZ = 150.;
408     const double varCamDegree = 10.;
409     Mat_<Vec3d> allPoint3D = Mat_<Vec3d>(nVerPoint3D * nHorPoint3D, 1);
410     Mat_<double> allPoint3DZ = Mat_<double>(nVerPoint3D * nHorPoint3D, 1);
411     Mat_<double> K;
412     Mat_<double> D;
413     const double deg2rad = 3.14159265358979323846 * 0.0055555555555555556;
414     const double rad2deg = 180 * 0.3183098861837906715;
415 
416 public:
417     int camRows = 480;
418     int camCols = 640;
419     int camFovY = 90;
420     int camFovX = 90;
421     int camRand = 10;//append random[0,camRand] to camera intrinsics
422     int nCamDist = 5;//refer to opencv for value domain
423     int nMinMotion = 32; // no less than X motion views
424     int nMaxMotion = INT_MAX; // no more than X motion views
425     int nPoint2DThenExit = 32;//exit when less than X pixies
426     int rotMode = 1 + 2 + 4;//0=noRot 1=xAxis 2=yAxis 4=zAxis
427     bool noTrans = false;//translate or not while motion
428     bool world2D = false;//planar world or not
429     bool rndSeek = true;//use random seek or not
430     bool enableVerbose = false;//check motions one by one or not
431     vector<MotionView> motionViews;//World Information: RightX, FrontY, DownZ
432     MotionSim(bool run = true, bool world2D0 = false, bool noTrans0 = false, int rotMode0 = 7) { if (run) runMotion(world2D0, noTrans0, rotMode0); }
433 
434 public:
435     void runMotion(bool world2D0 = false, bool noTrans0 = false, int rotMode0 = 7)
436     {
437         world2D = world2D0;
438         noTrans = noTrans0;
439         rotMode = rotMode0;
440         motionViews.clear();
441         if (rndSeek) cv::setRNGSeed(clock());
442         while (motionViews.size() < nMinMotion)
443         {
444             //1.GetAllPoint3D
445             if (world2D) allPoint3DZ = 0.;
446             else cv::randu(allPoint3DZ, -maxPoint3DZ, -minPoint3DZ);//DownZ
447             for (int i = 0, k = 0; i < nVerPoint3D; ++i)
448                 for (int j = 0; j < nHorPoint3D; ++j, ++k)
449                     allPoint3D(k) = Vec3d((j + cv::randu<double>()) * varPoint3DXY, (i + cv::randu<double>()) * varPoint3DXY, allPoint3DZ(i, j));
450 
451             //2.GetCamParams
452             double camFx = camCols / 2. / std::tan(camFovX / 2. * deg2rad) + cv::randu<double>() * camRand;
453             double camFy = camRows / 2. / std::tan(camFovY / 2. * deg2rad) + cv::randu<double>() * camRand;
454             double camCx = camCols / 2. + cv::randu<double>() * camRand;
455             double camCy = camRows / 2. + cv::randu<double>() * camRand;
456             K.create(3, 3); K << camFx, 0, camCx, 0, camFy, camCy, 0, 0, 1;
457             D.create(nCamDist, 1); cv::randu(D, -1.0, 1.0);
458 
459             //3.GetAllMotionView
460             motionViews.clear();
461             for (int64 k = 0; ; ++k)
462             {
463                 //3.1 JoinCamParams
464                 MotionView view;
465                 view.K = K.clone();
466                 view.D = D.clone();
467 
468                 //3.2 GetCamTrans
469                 if (k == 0) view.t(0) = view.t(1) = 0;
470                 else
471                 {
472                     view.t(0) = motionViews[k - 1].t(0) + cv::randu<double>() * varPoint3DXY;
473                     view.t(1) = motionViews[k - 1].t(1) + cv::randu<double>() * varPoint3DXY;
474                 }
475                 view.t(2) = minCamZ + cv::randu<double>() * (maxCamZ - minCamZ);
476                 view.t(2) = -view.t(2);//DownZ
477                 if (noTrans && k != 0) { view.t(0) = motionViews[0].t(0); view.t(1) = motionViews[0].t(1); view.t(2) = motionViews[0].t(2); }
478 
479                 //3.3 GetCamRot: degree-->radian-->matrix-->vector&quaternion
480                 view.degree = 0.;
481                 if (rotMode & 1) view.degree(0) = cv::randu<double>() * varCamDegree;
482                 if (rotMode & 2) view.degree(1) = cv::randu<double>() * varCamDegree;
483                 if (rotMode & 4) view.degree(2) = cv::randu<double>() * varCamDegree;
484                 view.radian = view.degree * deg2rad;
485                 euler2matrix(view.radian.ptr<double>(), view.R.ptr<double>());
486                 cv::Rodrigues(view.R, view.r);
487                 quat2matrix(view.q.ptr<double>(), view.R.ptr<double>(), false);
488                 cv::hconcat(view.R, view.t, view.T);
489                 cv::vconcat(view.r, view.t, view.rt);
490 
491                 //3.4 GetPoint3DAndPoint2D
492                 Mat_<Vec2d> allPoint2D;
493                 cv::projectPoints(allPoint3D, -view.r, -view.R.t() * view.t, view.K, view.D, allPoint2D);
494                 for (int k = 0; k < allPoint2D.total(); ++k)
495                     if (allPoint2D(k)[0] > 0 && allPoint2D(k)[0] < camCols && allPoint2D(k)[1] > 0 && allPoint2D(k)[1] < camRows)
496                     {
497                         view.point2D.push_back(allPoint2D(k));
498                         view.point3D.push_back(allPoint3D(k));
499                         view.point3DIds.push_back(k);
500                     }
501 
502                 //3.5 PrintDetails
503                 motionViews.push_back(view);
504                 if (enableVerbose)
505                 {
506                     cout << endl << view.print();
507                     cout << fmt::format("view={}   features={}\n", k, view.point2D.rows);
508                     double minV = 0, maxV = 0;//Distortion makes some minV next to maxV
509                     int minId = 0, maxId = 0;
510                     cv::minMaxIdx(allPoint2D.reshape(1, int(allPoint2D.total()) * allPoint2D.channels()), &minV, &maxV, &minId, &maxId);
511                     cout << fmt::format("minInfo:({}, {})", minId, minV) << allPoint3D(minId / 2) << allPoint2D(minId / 2) << endl;
512                     cout << fmt::format("maxInfo:({}, {})", maxId, maxV) << allPoint3D(maxId / 2) << allPoint2D(maxId / 2) << endl;
513                     cout << "Press any key to continue" << endl; std::getchar();
514                 }
515                 if (view.point2D.rows < nPoint2DThenExit || motionViews.size() > nMaxMotion) break;
516             }
517         }
518     }
519     void visMotion()
520     {
521         //1.CreateWidgets
522         Size2d validSize(nHorPoint3D * varPoint3DXY, nVerPoint3D * varPoint3DXY);
523         Mat_<cv::Affine3d> camPoses(int(motionViews.size()), 1); for (int k = 0; k < camPoses.rows; ++k) camPoses(k) = cv::Affine3d(motionViews[k].T);
524         viz::WText worldInfo(fmt::format("nMotionView: {}\nK: {}\nD: {}", motionViews.size(), cvarr2str(K), cvarr2str(D)), Point(10, 240), 10);
525         viz::WCoordinateSystem worldCSys(1000);
526         viz::WPlane worldGround(Point3d(validSize.width / 2, validSize.height / 2, 0), Vec3d(0, 0, 1), Vec3d(0, 1, 0), validSize);
527         viz::WCloud worldPoints(allPoint3D, Mat_<Vec3b>(allPoint3D.size(), Vec3b(0, 255, 0)));
528         viz::WTrajectory camTraj1(camPoses, viz::WTrajectory::FRAMES, 8);
529         viz::WTrajectorySpheres camTraj2(camPoses, 100, 2);
530         viz::WTrajectoryFrustums camTraj3(camPoses, Matx33d(K), 4., viz::Color::yellow());
531         worldCSys.setRenderingProperty(viz::OPACITY, 0.1);
532         worldGround.setRenderingProperty(viz::OPACITY, 0.1);
533         camTraj2.setRenderingProperty(viz::OPACITY, 0.6);
534 
535         //2.ShowWidgets
536         static viz::Viz3d viz3d(__FUNCTION__);
537         viz3d.showWidget("worldInfo", worldInfo);
538         viz3d.showWidget("worldCSys", worldCSys);
539         viz3d.showWidget("worldGround", worldGround);
540         viz3d.showWidget("worldPoints", worldPoints);
541         viz3d.showWidget("camTraj1", camTraj1);
542         viz3d.showWidget("camTraj2", camTraj2);
543         viz3d.showWidget("camTraj3", camTraj3);
544 
545         //3.UpdateWidghts
546         static const vector<MotionView>& views = motionViews;
547         viz3d.registerKeyboardCallback([](const viz::KeyboardEvent& keyboarEvent, void* pVizBorad)->void
548             {
549                 if (keyboarEvent.action != viz::KeyboardEvent::KEY_DOWN) return;
550                 static int pos = 0;
551                 if (keyboarEvent.code == ' ')
552                 {
553                     size_t num = views.size();
554                     size_t ind = pos % num;
555                     double xmin3D = DBL_MAX, ymin3D = DBL_MAX, xmin2D = DBL_MAX, ymin2D = DBL_MAX;
556                     double xmax3D = -DBL_MAX, ymax3D = -DBL_MAX, xmax2D = -DBL_MAX, ymax2D = -DBL_MAX;
557                     for (size_t k = 0; k < views[ind].point3D.rows; ++k)
558                     {
559                         Vec3d pt3 = views[ind].point3D(int(k));
560                         Vec2d pt2 = views[ind].point2D(int(k));
561                         if (pt3[0] < xmin3D) xmin3D = pt3[0];
562                         if (pt3[0] > xmax3D) xmax3D = pt3[0];
563                         if (pt3[1] < ymin3D) ymin3D = pt3[1];
564                         if (pt3[1] > ymax3D) ymax3D = pt3[1];
565                         if (pt2[0] < xmin2D) xmin2D = pt2[0];
566                         if (pt2[0] > xmax2D) xmax2D = pt2[0];
567                         if (pt2[1] < ymin2D) ymin2D = pt2[1];
568                         if (pt2[1] > ymax2D) ymax2D = pt2[1];
569                     }
570                     if (pos != 0)
571                     {
572                         for (int k = 0; k < views[ind == 0 ? num - 1 : ind - 1].point3D.rows; ++k) viz3d.removeWidget("active" + std::to_string(k));
573                         viz3d.removeWidget("viewInfo");
574                         viz3d.removeWidget("camSolid");
575                     }
576                     for (int k = 0; k < views[ind].point3D.rows; ++k) viz3d.showWidget("active" + std::to_string(k), viz::WSphere(views[ind].point3D(k), 5, 10));
577                     viz3d.showWidget("viewInfo", viz::WText(fmt::format("CurrentMotion: {}\nValidPoints: {}\nMin3DXY_Min2DXY: {}, {}, {}, {}\nMax3DXY_Max2DXY: {}, {}, {}, {}\nRot_Trans_Euler: {}\n",
578                         ind, views[ind].point3D.rows, xmin3D, ymin3D, xmin2D, ymin2D, xmax3D, ymax3D, xmax2D, ymax2D,
579                         cvarr2str(views[ind].r.t()) + cvarr2str(views[ind].t.t()) + cvarr2str(views[ind].degree.t())), Point(10, 10), 10));
580                     viz3d.showWidget("camSolid", viz::WCameraPosition(Matx33d(views[ind].K), 10, viz::Color::yellow()), cv::Affine3d(views[ind].T));
581                     ++pos;
582                 }
583             }, 0);
584         viz3d.spin();
585     }
586 };
587 
588 class OptimizeRt
589 {
590 public:
591     using MotionView = MotionSim::MotionView;
592     static void TestMe(int argc = 0, char** argv = 0)
593     {
594         int N = 99;
595         for (int k = 0; k < N; ++k)
596         {
597             //1.GenerateData
598             bool world2D = k % 2;
599             int rotMode = k % 7 + 1;
600             MotionSim motionSim(false);
601             motionSim.camFovX = 90;
602             motionSim.camFovY = 90;
603             motionSim.camRand = 10;
604             motionSim.nMinMotion = 16;//2
605             motionSim.nMaxMotion = 32;//4
606             motionSim.rndSeek = false;
607             motionSim.nCamDist = 5;
608             motionSim.runMotion(world2D, false, rotMode);
609             //motionSim.visMotion();
610             int rndInd = int(motionSim.motionViews.size() * cv::randu<double>());
611             Mat_<double> r0 = -motionSim.motionViews[rndInd].r;
612             Mat_<double> t0 = -motionSim.motionViews[rndInd].R.t() * motionSim.motionViews[rndInd].t;
613             const MotionView& motionView = motionSim.motionViews[rndInd];
614             double errRatio = 0.9;
615 
616             //2.CalcByCeres
617             Mat_<double> r1 = r0 * errRatio;
618             Mat_<double> t1 = t0 * errRatio;
619             ceres::Problem problem;
620             problem.AddResidualBlock(new ceres::AutoDiffCostFunction<ProjectionModelRt, ceres::DYNAMIC, 3, 3>(
621                 new ProjectionModelRt(motionView, motionSim.nCamDist), motionView.point3D.rows * 2), NULL, r1.ptr<double>(), t1.ptr<double>());
622             ceres::Solver::Options options;
623             ceres::Solver::Summary summary;
624             ceres::Solve(options, &problem, &summary);
625             int nIter1 = (int)summary.iterations.size();
626 
627             //3.AnalyzeError
628             double infr0r0 = norm(r0, r0 * errRatio, NORM_INF);
629             double infr0r1 = norm(r0, r1, NORM_INF);
630             double inft0t0 = norm(t0, t0 * errRatio, NORM_INF);
631             double inft0t1 = norm(t0, t1, NORM_INF);
632 
633             //4.PrintError
634             cout << fmt::format("LoopCount: {}      CeresSolver.iters: {}\n", k, nIter1);
635             if (infr0r1 > 1e-8 || inft0t1 > 1e-8)
636             {
637                 cout << fmt::format("infr0r1: {:<15.9}\t\t{:<15.9}\n", infr0r1, infr0r0);
638                 cout << fmt::format("inft0t1: {:<15.9}\t\t{:<15.9}\n", inft0t1, inft0t0);
639                 cout << "Press any key to continue" << endl; std::getchar();
640             }
641         }
642     }
643 
644 public:
645     struct ProjectionModelRt
646     {
647         const int nDist;
648         double K[4];
649         const double* D;
650         Mat_<Vec2d> point2D;
651         Mat_<Vec3d> point3D;
652         ProjectionModelRt(const MotionView& motionView0, const int nDist0) : nDist(nDist0)
653         {
654             K[0] = motionView0.K(0, 0);
655             K[1] = motionView0.K(1, 1);
656             K[2] = motionView0.K(0, 2);
657             K[3] = motionView0.K(1, 2);
658             D = motionView0.D.ptr<double>();
659             point2D = motionView0.point2D;
660             point3D = motionView0.point3D;
661         }
662         template <typename tp> bool operator()(const tp* const rot, const tp* const t, tp* errPoint2D) const
663         {
664             //1.Projection params
665             double fx = K[0];
666             double fy = K[1];
667             double cx = K[2];
668             double cy = K[3];
669 
670             //2.Distortion params
671             double k1 = D[0];
672             double k2 = D[1];
673             double p1 = D[2];
674             double p2 = D[3];
675             double k3, k4, k5, k6;
676             double s1, s2, s3, s4;
677             if (nDist > 4) k3 = D[4];
678             if (nDist > 5) { k4 = D[5]; k5 = D[6]; k6 = D[7]; }
679             if (nDist > 8) { s1 = D[8]; s2 = D[9]; s3 = D[10]; s4 = D[11]; }
680 
681             //3.Translation params
682             tp tx = t[0];
683             tp ty = t[1];
684             tp tz = t[2];
685 
686             //4.Rotation params
687             tp R11, R12, R13, R21, R22, R23, R31, R32, R33;
688             {
689                 tp theta = sqrt(rot[0] * rot[0] + rot[1] * rot[1] + rot[2] * rot[2]);
690                 tp cs = cos(theta);
691                 tp sn = sin(theta);
692                 tp itheta = 1. / theta;//if denominator==0
693                 tp cs1 = 1. - cs;
694                 tp nx = rot[0] * itheta;
695                 tp ny = rot[1] * itheta;
696                 tp nz = rot[2] * itheta;
697 
698                 tp nxnx = nx * nx, nyny = ny * ny, nznz = nz * nz;
699                 tp nxny = nx * ny, nxnz = nx * nz, nynz = ny * nz;
700                 tp nxsn = nx * sn, nysn = ny * sn, nzsn = nz * sn;
701 
702                 R11 = nxnx * cs1 + cs;
703                 R21 = nxny * cs1 + nzsn;
704                 R31 = nxnz * cs1 - nysn;
705 
706                 R12 = nxny * cs1 - nzsn;
707                 R22 = nyny * cs1 + cs;
708                 R32 = nynz * cs1 + nxsn;
709 
710                 R13 = nxnz * cs1 + nysn;
711                 R23 = nynz * cs1 - nxsn;
712                 R33 = nznz * cs1 + cs;
713             }
714 
715             //5.ReProjection
716             const Vec2d* data2D = point2D.ptr<Vec2d>();
717             const Vec3d* data3D = point3D.ptr<Vec3d>();
718             Vec<tp, 2>* err2D = (Vec<tp, 2>*)errPoint2D;
719             for (int k = 0; k < point3D.rows; ++k)
720             {
721                 //5.1 WorldCoordinate
722                 double X = data3D[k][0];
723                 double Y = data3D[k][1];
724                 double Z = data3D[k][2];
725 
726                 //5.2 CameraCoordinate
727                 tp x = R11 * X + R12 * Y + R13 * Z + tx;
728                 tp y = R21 * X + R22 * Y + R23 * Z + ty;
729                 tp z = R31 * X + R32 * Y + R33 * Z + tz;
730 
731                 //5.3 StandardPhysicsCoordinate
732                 tp iz = 1. / z; //if denominator==0
733                 tp xc = x * iz;
734                 tp yc = y * iz;
735 
736                 //5.4 DistortionPhysicsCoordinate
737                 tp xc2 = xc * xc;
738                 tp yc2 = yc * yc;
739                 tp d2 = xc2 + yc2;
740                 tp xcyc = 2. * xc * yc;
741                 tp d4 = d2 * d2;
742                 tp d6 = d2 * d4;
743                 tp d2xc2 = d2 + 2. * xc2;
744                 tp d2yc2 = d2 + 2. * yc2;
745                 tp nu, de, xd, yd;
746                 if (nDist < 5)
747                 {
748                     nu = 1. + k1 * d2 + k2 * d4;
749                     xd = xc * nu + p1 * xcyc + p2 * d2xc2;
750                     yd = yc * nu + p2 * xcyc + p1 * d2yc2;
751                 }
752                 else if (nDist < 8)
753                 {
754                     nu = 1. + k1 * d2 + k2 * d4 + k3 * d6;
755                     xd = xc * nu + p1 * xcyc + p2 * d2xc2;
756                     yd = yc * nu + p2 * xcyc + p1 * d2yc2;
757                 }
758                 else if (nDist < 12)
759                 {
760                     nu = 1. + k1 * d2 + k2 * d4 + k3 * d6;
761                     de = 1. / (1. + k4 * d2 + k5 * d4 + k6 * d6);//if denominator==0
762                     xd = xc * nu * de + p1 * xcyc + p2 * d2xc2;
763                     yd = yc * nu * de + p2 * xcyc + p1 * d2yc2;
764                 }
765                 else if (nDist < 14)
766                 {
767                     nu = 1. + k1 * d2 + k2 * d4 + k3 * d6;
768                     de = 1. / (1. + k4 * d2 + k5 * d4 + k6 * d6);//if denominator==0
769                     xd = xc * nu * de + p1 * xcyc + p2 * d2xc2 + s1 * d2 + s2 * d4;
770                     yd = yc * nu * de + p2 * xcyc + p1 * d2yc2 + s3 * d2 + s4 * d4;
771                 }
772                 err2D[k][0] = xd * fx + cx - data2D[k][0];
773                 err2D[k][1] = yd * fy + cy - data2D[k][1];
774             }
775             return true;
776         }
777     };
778 };
779 
780 class OptimizeKDRt
781 {
782 public:
783     using MotionView = MotionSim::MotionView;
784     static void TestMe(int argc = 0, char** argv = 0)
785     {
786         int N = 99;
787         for (int k = 0; k < N; ++k)
788         {
789             //1.GenerateData
790             bool world2D = k % 2;
791             int rotMode = k % 7 + 1;
792             MotionSim motionSim(false);
793             motionSim.camFovX = 90;
794             motionSim.camFovY = 90;
795             motionSim.camRand = 10;
796             motionSim.nMinMotion = 16;//2
797             motionSim.nMaxMotion = 32;//4
798             motionSim.rndSeek = false;
799             static const int nDist = 5;
800             motionSim.nCamDist = nDist;
801             motionSim.runMotion(world2D, false, rotMode);
802             //motionSim.visMotion();
803             Mat_<double> rs0; for (size_t k = 0; k < motionSim.motionViews.size(); ++k) rs0.push_back(-motionSim.motionViews[k].r);
804             Mat_<double> ts0; for (size_t k = 0; k < motionSim.motionViews.size(); ++k) ts0.push_back(-motionSim.motionViews[k].R.t() * motionSim.motionViews[k].t);
805             Mat_<double> K0({ 4, 1 }, { motionSim.motionViews[0].K(0, 0), motionSim.motionViews[0].K(1, 1), motionSim.motionViews[0].K(0, 2), motionSim.motionViews[0].K(1, 2) });
806             Mat_<double> D0 = motionSim.motionViews[0].D.clone();
807             double errRatio = 0.9;
808             double errRatioTrans = 0.99;
809 
810             //2.CalcByCeres
811             Mat_<double> rs1 = rs0 * errRatio;
812             Mat_<double> ts1 = ts0 * errRatioTrans;
813             Mat_<double> K1 = K0 * errRatio;
814             Mat_<double> D1 = D0 * errRatio;
815             ceres::Problem problem;
816             for (int k = 0; k < motionSim.motionViews.size(); ++k)
817                 problem.AddResidualBlock(new ceres::AutoDiffCostFunction<ProjectionModelKDRt, ceres::DYNAMIC, 3, 3, 4, nDist>(
818                     new ProjectionModelKDRt(motionSim.motionViews[k], motionSim.nCamDist), motionSim.motionViews[k].point3D.rows * 2), NULL,
819                     rs1.ptr<double>(k * 3), ts1.ptr<double>(k * 3),
820                     K1.ptr<double>(), D1.ptr<double>());
821             ceres::Solver::Options options;
822             ceres::Solver::Summary summary;
823             ceres::Solve(options, &problem, &summary);
824             int nIter1 = (int)summary.iterations.size();
825 
826             //3.AnalyzeError
827             double infrs0rs0 = norm(rs0, rs0 * errRatio, NORM_INF);
828             double infrs0rs1 = norm(rs0, rs1, NORM_INF);
829             double infts0ts0 = norm(ts0, ts0 * errRatioTrans, NORM_INF);
830             double infts0ts1 = norm(ts0, ts1, NORM_INF);
831             double infK0K0 = norm(K0, K0 * errRatio, NORM_INF);
832             double infK0K1 = norm(K0, K1, NORM_INF);
833             double infD0D0 = norm(D0, D0 * errRatio, NORM_INF);
834             double infD0D1 = norm(D0, D1, NORM_INF);
835 
836             //4.PrintError
837             cout << fmt::format("LoopCount: {}      CeresSolver.iters: {}\n", k, nIter1);
838             if (infrs0rs1 > 1e-8 || infts0ts1 > 1e-8 || infK0K1 > 1e-8 || infD0D1 > 1e-8)
839             {
840                 cout << fmt::format("infrs0rs1: {:<15.9}\t\t{:<15.9}\n", infrs0rs1, infrs0rs0);
841                 cout << fmt::format("infts0ts1: {:<15.9}\t\t{:<15.9}\n", infts0ts1, infts0ts0);
842                 cout << fmt::format("infK0K1  : {:<15.9}\t\t{:<15.9}\n", infK0K1, infK0K0);
843                 cout << fmt::format("infD0D1  : {:<15.9}\t\t{:<15.9}\n", infD0D1, infD0D0);
844                 cout << "Press any key to continue" << endl; std::getchar();
845             }
846         }
847     }
848 
849 public:
850     struct ProjectionModelKDRt
851     {
852         const int nDist;
853         Mat_<Vec2d> point2D;
854         Mat_<Vec3d> point3D;
855         ProjectionModelKDRt(const MotionView& motionView0, const int nDist0) : nDist(nDist0)
856         {
857             point2D = motionView0.point2D;
858             point3D = motionView0.point3D;
859         }
860         template <typename tp> bool operator()(const tp* const rot, const tp* const t, const tp* const K, const tp* const D, tp* errPoint2D) const
861         {
862             //1.Projection params
863             tp fx = K[0];
864             tp fy = K[1];
865             tp cx = K[2];
866             tp cy = K[3];
867 
868             //2.Distortion params
869             tp k1 = D[0];
870             tp k2 = D[1];
871             tp p1 = D[2];
872             tp p2 = D[3];
873             tp k3, k4, k5, k6;
874             tp s1, s2, s3, s4;
875             if (nDist > 4) k3 = D[4];
876             if (nDist > 5) { k4 = D[5]; k5 = D[6]; k6 = D[7]; }
877             if (nDist > 8) { s1 = D[8]; s2 = D[9]; s3 = D[10]; s4 = D[11]; }
878 
879             //3.Translation params
880             tp tx = t[0];
881             tp ty = t[1];
882             tp tz = t[2];
883 
884             //4.
885             tp R11, R12, R13, R21, R22, R23, R31, R32, R33;
886             {
887                 tp theta = sqrt(rot[0] * rot[0] + rot[1] * rot[1] + rot[2] * rot[2]);
888                 tp cs = cos(theta);
889                 tp sn = sin(theta);
890                 tp itheta = 1. / theta;//if denominator==0
891                 tp cs1 = 1. - cs;
892                 tp nx = rot[0] * itheta;
893                 tp ny = rot[1] * itheta;
894                 tp nz = rot[2] * itheta;
895 
896                 tp nxnx = nx * nx, nyny = ny * ny, nznz = nz * nz;
897                 tp nxny = nx * ny, nxnz = nx * nz, nynz = ny * nz;
898                 tp nxsn = nx * sn, nysn = ny * sn, nzsn = nz * sn;
899 
900                 R11 = nxnx * cs1 + cs;
901                 R21 = nxny * cs1 + nzsn;
902                 R31 = nxnz * cs1 - nysn;
903 
904                 R12 = nxny * cs1 - nzsn;
905                 R22 = nyny * cs1 + cs;
906                 R32 = nynz * cs1 + nxsn;
907 
908                 R13 = nxnz * cs1 + nysn;
909                 R23 = nynz * cs1 - nxsn;
910                 R33 = nznz * cs1 + cs;
911             }
912 
913             //5.ReProjection
914             const Vec2d* data2D = point2D.ptr<Vec2d>();
915             const Vec3d* data3D = point3D.ptr<Vec3d>();
916             Vec<tp, 2>* err2D = (Vec<tp, 2>*)errPoint2D;
917             for (int k = 0; k < point3D.rows; ++k)
918             {
919                 //5.1 WorldCoordinate
920                 double X = data3D[k][0];
921                 double Y = data3D[k][1];
922                 double Z = data3D[k][2];
923 
924                 //5.2 CameraCoordinate
925                 tp x = R11 * X + R12 * Y + R13 * Z + tx;
926                 tp y = R21 * X + R22 * Y + R23 * Z + ty;
927                 tp z = R31 * X + R32 * Y + R33 * Z + tz;
928 
929                 //5.3 StandardPhysicsCoordinate
930                 tp iz = 1. / z; //if denominator==0
931                 tp xc = x * iz;
932                 tp yc = y * iz;
933 
934                 //5.4 DistortionPhysicsCoordinate
935                 tp xc2 = xc * xc;
936                 tp yc2 = yc * yc;
937                 tp d2 = xc2 + yc2;
938                 tp xcyc = 2. * xc * yc;
939                 tp d4 = d2 * d2;
940                 tp d6 = d2 * d4;
941                 tp d2xc2 = d2 + 2. * xc2;
942                 tp d2yc2 = d2 + 2. * yc2;
943                 tp nu, de, xd, yd;
944                 if (nDist < 5)
945                 {
946                     nu = 1. + k1 * d2 + k2 * d4;
947                     xd = xc * nu + p1 * xcyc + p2 * d2xc2;
948                     yd = yc * nu + p2 * xcyc + p1 * d2yc2;
949                 }
950                 else if (nDist < 8)
951                 {
952                     nu = 1. + k1 * d2 + k2 * d4 + k3 * d6;
953                     xd = xc * nu + p1 * xcyc + p2 * d2xc2;
954                     yd = yc * nu + p2 * xcyc + p1 * d2yc2;
955                 }
956                 else if (nDist < 12)
957                 {
958                     nu = 1. + k1 * d2 + k2 * d4 + k3 * d6;
959                     de = 1. / (1. + k4 * d2 + k5 * d4 + k6 * d6);//if denominator==0
960                     xd = xc * nu * de + p1 * xcyc + p2 * d2xc2;
961                     yd = yc * nu * de + p2 * xcyc + p1 * d2yc2;
962                 }
963                 else if (nDist < 14)
964                 {
965                     nu = 1. + k1 * d2 + k2 * d4 + k3 * d6;
966                     de = 1. / (1. + k4 * d2 + k5 * d4 + k6 * d6);//if denominator==0
967                     xd = xc * nu * de + p1 * xcyc + p2 * d2xc2 + s1 * d2 + s2 * d4;
968                     yd = yc * nu * de + p2 * xcyc + p1 * d2yc2 + s3 * d2 + s4 * d4;
969                 }
970                 err2D[k][0] = xd * fx + cx - data2D[k][0];
971                 err2D[k][1] = yd * fy + cy - data2D[k][1];
972             }
973             return true;
974         }
975     };
976 };
977 
978 int main(int argc, char** argv) { OptimizeKDRt::TestMe(argc, argv); return 0; }
979 int main1(int argc, char** argv) { OptimizeRt::TestMe(argc, argv); return 0; }
980 int main2(int argc, char** argv) { OptimizeKDRt::TestMe(argc, argv); return 0; }
View Code