Loading

欧几里得算法python实现

计算两个数的最大公约数:辗转相除法(欧几里得算法)。

gcd(a, b) = gcd(b, a mod b)

def gcd(a, b):
    if b == 0:
        return a
    else:
        return gcd(b, a % b)

# print(gcd(12, 120))

class Fraction:
    def __init__(self, a, b):
        self.a = a
        self.b = b
        self.maximum_convention = self.gcd(self.a, self.b)
        self.a /= self.maximum_convention
        self.b /= self.maximum_convention

    def least_common_multiple(self, x, y):
        maximum_convention = self.gcd(x, y)
        return maximum_convention

    def __add__(self, other):
        # other 表示另一个对象,即计算 a/b + other.a/other.b
        a = self.a
        b = self.b
        c = other.a
        d = other.b
        fenmu = self.least_common_multiple(b,d)
        fenzi = a*fenmu/b + c*fenmu/d
        return Fraction(fenzi, fenmu)
    

    def gcd(self, x, y):

        while y > 0:
            c = x % y
            x = y
            y = c
        return x
    def __repr__(self):
        return f'分数:{self.a}/{self.b}'

fun = Fraction(1,2)
f2 = Fraction(1, 4)
print(fun+f2)

 

posted @ 2021-08-11 16:31  climber_dzw  阅读(350)  评论(0编辑  收藏  举报