Java微服务(三):负载均衡、序列化、熔断

  本文接着上一篇写的《Java微服务(二):服务消费者与提供者搭建》,上一篇文章主要讲述了消费者与服务者的搭建与简单的实现。其中重点需要注意配置文件中的几个坑。

本章节介绍一些零散的内容:服务的负载均衡,序列化和熔断

1.服务负载均衡

负载均衡可分为软件负载均衡和硬件负载均衡。在我们日常开发中,一般很难接触到硬件负载均衡。但软件负载均衡还是可以接触到的,比如 Nginx。dubbo提供的也是软负载。

 

 

 

 

 

详细内容可以阅读dubbo官网关于负载均衡的介绍,这里总结下负载均衡的方式:

  • 权重随机算法的 RandomLoadBalance

  RandomLoadBalance 是加权随机算法的具体实现,它的算法思想很简单。假设我们有一组服务器 servers = [A, B, C],他们对应的权重为 weights = [5, 3, 2],权重总和为10。那么就有5/10的请求达到A服务器上,3/10和2/10分别达到B和C上。只要随机数生成器产生的随机数分布性很好,在经过多次选择后,每个服务器被选中的次数比例接近其权重比例。当调用次数比较少时,Random 产生的随机数可能会比较集中,此时多数请求会落到同一台服务器上。

  • 最少活跃调用数算法的 LeastActiveLoadBalance

  每个服务提供者对应一个活跃数 active。初始情况下,所有服务提供者活跃数均为0。每收到一个请求,活跃数加1,完成请求后则将活跃数减1,在服务运行一段时间后,性能好的服务提供者处理请求的速度更快,因此活跃数下降的也越快,此时这样的服务提供者能够优先获取到新的服务请求、这就是最小活跃数负载均衡算法的基本思想,目前此算法还引入了权重值。

  • 基于 hash 一致性的 ConsistentHashLoadBalance

  首先根据 ip 或者其他的信息为缓存节点生成一个 hash,并将这个 hash 投射到 [0, 232 - 1] 的圆环上。当有查询或写入请求时,则为缓存项的 key 生成一个 hash 值。然后查找第一个大于或等于该 hash 值的缓存节点,并到这个节点中查询或写入缓存项。如果当前节点挂了,则在下一次查询或写入缓存时,为缓存项查找另一个大于其 hash 值的缓存节点即可。

  • 基于加权轮询算法的 RoundRobinLoadBalance

  所谓轮询是指将请求轮流分配给每台服务器。举个例子,我们有三台服务器 A、B、C。我们将第一个请求分配给服务器 A,第二个请求分配给服务器 B,第三个请求分配给服务器 C,第四个请求再次分配给服务器 A。这个过程就叫做轮询。轮询是一种无状态负载均衡算法,实现简单,适用于每台服务器性能相近的场景下。加权轮询是将服务器赋一个权值,然后按照该权值进行轮训。

 

代码构建,本例使用轮训算法做demo

直接在yml配置文件中添加loadbalance注解就可以

 

 开启2个服务提供者,并且使用服务消费者消费,查看日志

 

 2.序列化

  Dubbo 中支持的序列化方式:

  • dubbo 序列化:阿里尚未开发成熟的高效 java 序列化实现,阿里不建议在生产环境使用它
  • hessian2 序列化:hessian 是一种跨语言的高效二进制序列化方式。但这里实际不是原生的 hessian2 序列化,而是阿里修改过的 hessian lite,它是 dubbo RPC 默认启用的序列化方式
  • json 序列化:目前有两种实现,一种是采用的阿里的 fastjson 库,另一种是采用 dubbo 中自己实现的简单 json 库,但其实现都不是特别成熟,而且 json 这种文本序列化性能一般不如上面两种二进制序列化。
  • java 序列化:主要是采用 JDK 自带的 Java 序列化实现,性能很不理想。

  dubbo自带的序列化方式不成熟,而json和java序列化性能不理想。dubbo可以使用hessian2序列化,但是hessian2是跨语言的,没有单独对java语言做优化,所以很多单独给java提供优化的工具性能比hessian2要好。我们为 dubbo 引入 Kryo 和 FST 这两种高效 Java 序列化实现,来逐步取代 hessian2。

dubbo有关序列化的实例如下:

 

 代码构建,首先增加依赖

 1   <dependency>
 2             <groupId>de.javakaffee</groupId>
 3             <artifactId>kryo-serializers</artifactId>
 4             <version>0.42</version>
 5         </dependency>
 6         <!-- https://mvnrepository.com/artifact/org.springframework.cloud/spring-cloud-starter-hystrix -->
 7         <!-- https://mvnrepository.com/artifact/org.springframework.cloud/spring-cloud-starter-netflix-hystrix -->
 8         <dependency>
 9             <groupId>org.springframework.cloud</groupId>
10             <artifactId>spring-cloud-starter-netflix-hystrix</artifactId>
11             <version>2.0.1.RELEASE</version>
12         </dependency>
13         <!-- https://mvnrepository.com/artifact/org.springframework.cloud/spring-cloud-starter-netflix-hystrix-dashboard -->
14         <dependency>
15             <groupId>org.springframework.cloud</groupId>
16             <artifactId>spring-cloud-starter-netflix-hystrix-dashboard</artifactId>
17             <version>2.0.1.RELEASE</version>
18         </dependency>

在配置文件中增加配置的属性即可:

 

 

 

此时序列化配置完成,以下总结了常见序列化方式的性能

 

 

 3.熔断

  由于网络和自身的原因,RPC之间的调用并不能保证100%可用,如果服务器产生了宕机,同时又有大量的请求过来,就会出现雪崩,为了解决此问题,业界提出了熔断。熔断器打开后,为了避免连锁故障,通过 fallback 方法可以直接返回一个固定值。此时fallback中可以做很多逻辑处理,比喻日志或者邮件通过开发人员,及时对服务器进行问题排查,降低风险度。

代码构建,首先增加依赖

 1 <!-- https://mvnrepository.com/artifact/org.springframework.cloud/spring-cloud-starter-hystrix -->
 2         <!-- https://mvnrepository.com/artifact/org.springframework.cloud/spring-cloud-starter-netflix-hystrix -->
 3         <dependency>
 4             <groupId>org.springframework.cloud</groupId>
 5             <artifactId>spring-cloud-starter-netflix-hystrix</artifactId>
 6             <version>2.0.1.RELEASE</version>
 7         </dependency>
 8         <!-- https://mvnrepository.com/artifact/org.springframework.cloud/spring-cloud-starter-netflix-hystrix-dashboard -->
 9         <dependency>
10             <groupId>org.springframework.cloud</groupId>
11             <artifactId>spring-cloud-starter-netflix-hystrix-dashboard</artifactId>
12             <version>2.0.1.RELEASE</version>
13         </dependency>

其中第二个依赖是在熔断仪表盘中使用的。具体代码和相关解释如下如下:

 

 

 

 熔断仪表盘的配置,这里需要注意spring boot2和1的配置是有区别的,具体可以参考官网文档

 1 package com.edu.hello.dubbo.service.user.consumer.config;
 2 
 3 import com.netflix.hystrix.contrib.metrics.eventstream.HystrixMetricsStreamServlet;
 4 import org.springframework.boot.web.servlet.ServletRegistrationBean;
 5 import org.springframework.context.annotation.Bean;
 6 import org.springframework.context.annotation.Configuration;
 7 
 8 /**
 9  * @ClassName HystrixDashboardConfiguration
10  * @Deccription TODO
11  * @Author DZ
12  * @Date 2019/9/3 23:10
13  **/
14 @Configuration
15 public class HystrixDashboardConfiguration {
16     @Bean
17     public ServletRegistrationBean getServlet() {
18         HystrixMetricsStreamServlet streamServlet = new HystrixMetricsStreamServlet();
19         ServletRegistrationBean registrationBean = new ServletRegistrationBean(streamServlet);
20         registrationBean.setLoadOnStartup(1);
21         registrationBean.addUrlMappings("/hystrix.stream");
22         registrationBean.setName("HystrixMetricsStreamServlet");
23         return registrationBean;
24     }
25 }

 启动服务,查看结果。这里只启动了服务消费者,没有启动服务提供者,制造服务超时。

 访问http://localhost:9090/hystrix查看熔断界面,其他详细信息可以查看详细信息,其中仪表盘的访问地址是来自于config中,仪表盘如下:

 

 

  访问http://localhost:9090/hystrix.stream查看熔断仪表盘界面,更加详细查看熔断相关的信息

 仪表盘中相关参数解释如下:

posted @ 2019-10-21 23:15  光头才能强  阅读(2356)  评论(0编辑  收藏  举报