Sorting It All Out
Sorting It All Out
Time Limit: 1000MS | Memory Limit: 10000K | |
Description
An ascending sorted sequence of distinct values is one in which some form of a less-than operator is used to order the elements from smallest to largest. For example, the sorted sequence A, B, C, D implies that A < B, B < C and C < D. in this problem, we will give you a set of relations of the form A < B and ask you to determine whether a sorted order has been specified or not.
Input
Input consists of multiple problem instances. Each instance starts with a line containing two positive integers n and m. the first value indicated the number of objects to sort, where 2 <= n <= 26. The objects to be sorted will be the first n characters of the uppercase alphabet. The second value m indicates the number of relations of the form A < B which will be given in this problem instance. Next will be m lines, each containing one such relation consisting of three characters: an uppercase letter, the character "<" and a second uppercase letter. No letter will be outside the range of the first n letters of the alphabet. Values of n = m = 0 indicate end of input.
Output
For each problem instance, output consists of one line. This line should be one of the following three:
Sorted sequence determined after xxx relations: yyy...y.
Sorted sequence cannot be determined.
Inconsistency found after xxx relations.
where xxx is the number of relations processed at the time either a sorted sequence is determined or an inconsistency is found, whichever comes first, and yyy...y is the sorted, ascending sequence.
Sorted sequence determined after xxx relations: yyy...y.
Sorted sequence cannot be determined.
Inconsistency found after xxx relations.
where xxx is the number of relations processed at the time either a sorted sequence is determined or an inconsistency is found, whichever comes first, and yyy...y is the sorted, ascending sequence.
Sample Input
4 6 A<B A<C B<C C<D B<D A<B 3 2 A<B B<A 26 1 A<Z 0 0
Sample Output
Sorted sequence determined after 4 relations: ABCD. Inconsistency found after 2 relations. Sorted sequence cannot be determined.
分析:优先判断有没有环;
然后判断能不能全部排好序;
最后才是条件不全;
前两个利用拓扑排序,入度为0入队列,同一时间有>1个在队列中,条件不全;
拓扑完还有入度的为环,不成立,输出;
代码:
#include <iostream> #include <cstdio> #include <cstdlib> #include <cmath> #include <algorithm> #include <climits> #include <cstring> #include <string> #include <set> #include <bitset> #include <map> #include <queue> #include <stack> #include <vector> #define rep(i,m,n) for(i=m;i<=n;i++) #define mod 1000000007 #define inf 0x3f3f3f3f #define vi vector<int> #define pb push_back #define mp make_pair #define fi first #define se second #define ll long long #define pi acos(-1.0) #define pii pair<int,int> #define sys system("pause") const int maxn=1e4+10; const int N=5e4+10; const int M=N*10*10; using namespace std; inline ll gcd(ll p,ll q){return q==0?p:gcd(q,p%q);} inline ll qpow(ll p,ll q){ll f=1;while(q){if(q&1)f=f*p;p=p*p;q>>=1;}return f;} inline void umax(ll &p,ll q){if(p<q)p=q;} inline void umin(ll &p,ll q){if(p>q)p=q;} int n,m,k,t,du[26],dudu[26],ret[27]; vi e[26]; char op[5]; int gao() { int i,j,ok=1; ret[0]=0; queue<int>p; rep(i,0,n-1){du[i]=dudu[i];if(!du[i])p.push(i);} while(!p.empty()) { if(p.size()>1)ok=0; int q=p.front(); p.pop(); ret[++ret[0]]=q; for(int i=0;i<e[q].size();i++) { int x=e[q][i]; if(--du[x]==0)p.push(x); } } rep(i,0,n-1)if(du[i])return 2; return ok&&ret[0]==n; } int main() { int i,j; while(~scanf("%d%d",&n,&k)) { bool flag=false; if(!n&&!k)break; rep(i,0,n-1)dudu[i]=0,e[i].clear(); rep(i,1,k) { scanf("%s",op); if(op[1]=='>')swap(op[0],op[2]); e[op[0]-'A'].pb(op[2]-'A'); dudu[op[2]-'A']++; if(flag)continue; int x=gao(); if(x==1) { printf("Sorted sequence determined after %d relations: ",i); rep(j,1,ret[0])printf("%c",ret[j]+'A'); puts("."); flag=true; } else if(x==2)printf("Inconsistency found after %d relations.\n",i),flag=true; } if(!flag)puts("Sorted sequence cannot be determined."); } return 0; }