Taxes

Taxes
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

Mr. Funt now lives in a country with a very specific tax laws. The total income of mr. Funt during this year is equal to n (n ≥ 2) burles and the amount of tax he has to pay is calculated as the maximum divisor of n (not equal to n, of course). For example, if n = 6 then Funt has to pay 3 burles, while for n = 25 he needs to pay 5 and if n = 2 he pays only 1 burle.

As mr. Funt is a very opportunistic person he wants to cheat a bit. In particular, he wants to split the initial n in several partsn1 + n2 + ... + nk = n (here k is arbitrary, even k = 1 is allowed) and pay the taxes for each part separately. He can't make some part equal to 1 because it will reveal him. So, the condition ni ≥ 2 should hold for all i from 1 to k.

Ostap Bender wonders, how many money Funt has to pay (i.e. minimal) if he chooses and optimal way to split n in parts.

Input

The first line of the input contains a single integer n (2 ≤ n ≤ 2·109) — the total year income of mr. Funt.

Output

Print one integer — minimum possible number of burles that mr. Funt has to pay as a tax.

Examples
input
4
output
2
input
27
output
3
分析:哥德巴赫猜想,任一大于2的偶数都可写成两个质数之和;
   所以分析可知最后答案不会超过3;
代码:
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <algorithm>
#include <climits>
#include <cstring>
#include <string>
#include <set>
#include <map>
#include <queue>
#include <stack>
#include <vector>
#include <list>
#define rep(i,m,n) for(i=(int)m;i<=(int)n;i++)
#define rsp(it,s) for(set<int>::iterator it=s.begin();it!=s.end();it++)
#define mod 1000000007
#define inf 0x3f3f3f3f
#define vi vector<int>
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define ll long long
#define pi acos(-1.0)
#define pii pair<int,int>
#define Lson L, mid, ls[rt]
#define Rson mid+1, R, rs[rt]
#define sys system("pause")
const int maxn=1e5+10;
using namespace std;
ll gcd(ll p,ll q){return q==0?p:gcd(q,p%q);}
ll qpow(ll p,ll q){ll f=1;while(q){if(q&1)f=f*p;p=p*p;q>>=1;}return f;}
inline ll read()
{
    ll x=0;int f=1;char ch=getchar();
    while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
    while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
    return x*f;
}
int n,m,k,t;
ll p;
bool isprime(ll p)
{
    if(p<=1)return false;
    if(p==2)return true;
    else if(p%2==0)return false;
    for(int i=3;(ll)i*i<=p;i+=2)if(p%i==0)return false;
    return true;
}
int main()
{
    int i,j;
    scanf("%lld",&p);
    if(isprime(p))puts("1");
    else
    {
        if(p%2==0)puts("2");
        else
        {
            if(isprime(p-2))puts("2");
            else puts("3");
        }
    }
    //system("Pause");
    return 0;
}
posted @ 2016-11-28 23:05  mxzf0213  阅读(380)  评论(0编辑  收藏  举报