ural1523 K-inversions
K-inversions
Time limit: 1.0 second
Memory limit: 64 MB
Memory limit: 64 MB
Consider a permutation a1, a2, …, an (all ai are different integers in range from 1 to n). Let us call k-inversion a sequence of numbers i1, i2, …, ik such that 1 ≤ i1 < i2 < … < ik ≤ n andai1 > ai2 > … > aik. Your task is to evaluate the number of different k-inversions in a given permutation.
Input
The first line of the input contains two integers n and k (1 ≤ n ≤ 20000, 2 ≤ k ≤ 10). The second line is filled with n numbers ai.
Output
Output a single number — the number of k-inversions in a given permutation. The number must be taken modulo 109.
Samples
input | output |
---|---|
3 2 3 1 2 |
2 |
5 3 5 4 3 2 1 |
10
|
分析:类似于逆序对,求k次递减序列的个数,树状数组+dp更新,注意取模;
代码:
#include <iostream> #include <cstdio> #include <cstdlib> #include <cmath> #include <algorithm> #include <climits> #include <cstring> #include <string> #include <set> #include <map> #include <queue> #include <stack> #include <vector> #include <list> #define rep(i,m,n) for(i=m;i<=n;i++) #define rsp(it,s) for(set<int>::iterator it=s.begin();it!=s.end();it++) #define mod 1000000000 #define inf 0x3f3f3f3f #define vi vector<int> #define pb push_back #define mp make_pair #define fi first #define se second #define ll long long #define pi acos(-1.0) #define pii pair<int,int> #define Lson L, mid, rt<<1 #define Rson mid+1, R, rt<<1|1 const int maxn=2e4+10; const int dis[4][2]={{0,1},{-1,0},{0,-1},{1,0}}; using namespace std; ll gcd(ll p,ll q){return q==0?p:gcd(q,p%q);} ll qpow(ll p,ll q){ll f=1;while(q){if(q&1)f=f*p;p=p*p;q>>=1;}return f;} int n,m,k,t,a[maxn],dp[11][maxn],p[maxn]; ll ans; void add(int x,int y) { for(int i=x;i<=n;i+=(i&(-i))) a[i]+=y,a[i]%=mod; } int get(int x) { int res=0; for(int i=x;i;i-=(i&(-i))) res+=a[i],res%=mod; return res; } int main() { int i,j; scanf("%d%d",&n,&k); rep(i,1,n)scanf("%d",&p[i]),dp[1][i]=1; rep(i,2,k) { memset(a,0,sizeof a); rep(j,1,n) { dp[i][j]=(get(n)-get(p[j])+mod)%mod; add(p[j],dp[i-1][j]); } } rep(i,1,n)ans=(ans+dp[k][i])%mod; printf("%lld\n",ans); //system("Pause"); return 0; }