9、主成分分析

一、用自己的话描述出其本身的含义:

1、特征选择

  通过样本的特征来预测样本所对应的值。这个样本数量一定要多,利用已有的特征计算出一个抽象程度更高的特征集。

2、PCA

  主成分分析技术,利用降维的思想,把多指标转化为少数几个综合指标。

二、并用自己的话阐述出两者的主要区别

  特征选择是从已经存在的特征中选取携带信息最多的,且选完之后的特征依然具有可解释性;同时我们也可以知道特征在源数据的哪个位置,待表数据的什么含义。
  PCA是将已经存在的特征进行压缩,降维完成后的特征不再是源数据中的任何一个特征,而是通过通过某种方式组合起来的特征,新的特征矩阵不再具有可读性,可以说创造了一种新的特征。

 

posted on 2020-04-29 15:14  dyunc3  阅读(178)  评论(0编辑  收藏  举报

导航