牛客7501H「2020ICPC-小米 Round1」Grouping
题目来源:牛客 2020ICPC-小米 Round1。H. Grouping。ACM赛,小米邀请赛,牛客网,杜瑜皓,吉如一。
题目大意
给出 \(2n\) 个整数 \(a_1,a_2,\dots ,a_{2n}\)。现在要将它们分成 \(n\) 组,每组恰好两个数。每组的权值是两数之差(大减小)。
一个分组方案的权值是【所有组的权值的方差】。可重集 \(x_1,x_2,\dots ,x_m\) 的方差定义为:\(\frac{1}{m}\sum_{i=1}^{m}(x_i-\overline{x})^2\)。
求分组方案的权值的期望。
数据范围:\(1\leq n\leq 10^5\),\(1\leq a_i\leq 10^6\)。
本题题解
首先,\(2n\) 个人的分组方案数,可以 DP 求出。设 \(dp[i]\) 表示 \(2i\) 个人的分组方案数。转移时要先拿出来一组,剩下 \(2(i-1)\) 个人的方案数为 \(dp[i-1]\)。为了避免算重,我们强制拿出来的这组包含编号为 \(1\) 的人。那么这组的另一个人有 \(2i-1\) 种选择。于是得到转移式:\(dp[i] = dp[i-1]\times(2i-1)\)。DP 的时间复杂度 \(O(n)\)。
答案要求期望,期望等于总和除以方案数,方案数就是 \(dp[n]\)。也就是说,设每组差分别为 \(d_1,d_2,\dots,d_n\),则:
分母已经求出。我们只需要考虑分子:
考虑对这三项分别求。
前两项是类似的,关键在于求出 \(\sum_{\text{方案}}\sum_{i = 1}^{n}d_i^2\)。可以分别计算 \(d_i\) 对答案的贡献。也就是:\(\sum d_i^2\times dp[n-1]\),它等于:\(dp[n-1]\times \sum_{i=1}^{2n}\sum_{j = i + 1}^{2n}(a_i - a_j)^2\)。暴力计算,时间复杂度是 \(O(n^2)\) 的。
设 \(A = \max_{i = 1}^{n}\{a_i\}\)。\(A\leq 10^6\)。
考虑枚举 \(a_i,a_j\) 的差。求出一个数组 \(h_k = \sum_{1\leq i<j\leq n}[|a_i-a_j| = k]\) (\(k\in[0,A]\))。则 \(\sum_{i=1}^{2n}\sum_{j = i + 1}^{2n}(a_i - a_j)^2\) 就等于 \(\sum_{k = 0}^{A} h_k\times k^2\)。
问题转化为如何求 \(h\) 数组。先用一个桶记录每个值的出现次数,即 \(f_j = \sum_{i=1}^{n}[a_i=j]\) (\(j\in[0,A]\)),则 \(h_k = \sum_{i = k}^{A} f_{i}\times f_{i-k}\)。为了把它搞成卷积的形式,我们把 \(f\) 反过来,设 \(g_i = f_{A-i}\) (\(i\in[0,A]\)),则 \(h_k = \sum_{i = k}^{A}g_{A-i}\times f_{i-k} = \sum_{i = 0}^{A-k}g_{A-k-i}\times f_{i}\)。
对 \(f\), \(g\) 做一次卷积,把卷积的结果反转,就是 \(h\) 数组了。进而能够求出答案式的前两项:\(\frac{\sum_{\text{方案}}\sum_{i = 1}^{n}d_i^2}{n} - \frac{\sum_{\text{方案}}\sum_{i = 1}^{n}d_i^2}{n^2}\)。
时间复杂度 \(O(A\log A + n)\),因为 \(A\) 高达 \(10^6\) 而 NTT 常数较大,所以要注意卡常。
答案式的第三项:\(\frac{\sum_{\text{方案}}\sum_{i\neq j}d_id_j}{n^2}\)。求分子。把它用 \(a\) 表示出来后,暴力求是 \(O(n^4)\) 的(也就是枚举 \(4\) 个互不相同的点)。
考虑利用我们预处理好的 \(h\) 数组来求。先忽略 \(4\) 个点互不相同这一要求,那么算出是:\(\sum_{i=0}^{A}\sum_{j = 0}^{A}h_i\cdot h_j\cdot i\cdot j = (\sum_{i=0}^{A}h_i\times i)^2\),其含义是枚举两对点,第一对点差为 \(i\),第二对点差为 \(j\),把这两对点分别作为 \(d_i,d_j\)。
对于互不相同的要求,我们考虑把有重复点的两对去掉。
先把 \(a\) 数组排序。称每对点里下标较小的为“前面点”,下标较大的为“后面点”。
枚举这个重复点 \(i\) (\(1\leq i\leq 2n\)),此时分三种情况讨论:
- 两对点都是以 \(i\) 为“前面点”,则还需要在 \(i\) 后面再选两个点 \(p,q\),求出 \(\sum_{p,q>i}(a_p-a_i)(a_q-a_i)\)。
- 两对点都是以 \(i\) 为“后面点”,则还需要在 \(i\) 前面再选两个点 \(p,q\),求出 \(\sum_{p,q<i}(a_i-a_p)(a_i-a_q)\)。
- 一对点以 \(i\) 为“前面点”,另一对点以 \(i\) 为“后面点”,则贡献是 \(2\times \sum_{p<i,q>i}(a_i-a_p)(a_q-a_i)\)。
对 \(a\) 序列做前、后缀和,则这三种情况的贡献都能轻松算出来,将它们减掉即可。
但是,发现两对点完全相同(前面点、后面点都相同)的情况,在分类 1 和分类 2 里都被计算到了,所以要再加回来一次。这种情况的贡献是 \(\sum_{i=0}^{A}h_i\cdot i\cdot i\)。
这样,经过简单的容斥(总方案 - 有公共点的 + 两个都是公共点的),我们就求出了答案的第三部分!
时间复杂度 \(O(n+A)\)。
总时间复杂度 \(O(A\log A + n)\)。
参考代码
内含一个精细优化后的 NTT 模板(namespace SuperNTT
),因为太长了,我将其单独取出并附在后面:
实际提交时,建议使用快速输入、输出,详见本博客公告。
// problem: H
#include <bits/stdc++.h>
using namespace std;
#define pb push_back
#define mk make_pair
#define lob lower_bound
#define upb upper_bound
#define fi first
#define se second
#define SZ(x) ((int)(x).size())
typedef unsigned int uint;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int, int> pii;
template<typename T> inline void ckmax(T& x, T y) { x = (y > x ? y : x); }
template<typename T> inline void ckmin(T& x, T y) { x = (y < x ? y : x); }
namespace SuperNTT {
// ...
} // namespace SuperNTT
const int MAXN = 1e5, MAXM = MAXN * 2, MAXA = 1e6;
const int MOD = 998244353;
inline int mod1(int x) { return x < MOD ? x : x - MOD; }
inline int mod2(int x) { return x < 0 ? x + MOD : x; }
inline void add(int &x, int y) { x = mod1(x + y); }
inline void sub(int &x, int y) { x = mod2(x - y); }
inline int pow_mod(int x, int i) {
int y = 1;
while (i) {
if (i & 1) y = (ll)y * x % MOD;
x = (ll)x * x % MOD;
i >>= 1;
}
return y;
}
int n, m, a[MAXM + 5], pre[MAXM + 5], suf[MAXM + 5];
int f[MAXA + 5], g[MAXA + 5], res[MAXA + 5];
int inv_n;
int dp[MAXN + 5];
int ans;
int main() {
cin >> n;
dp[0] = 1;
for (int i = 1; i <= n; ++i) {
dp[i] = (ll)(i * 2 - 1) * dp[i - 1] % MOD;
}
// cerr << dp[n] << endl;
m = n * 2;
for (int i = 1; i <= m; ++i) {
cin >> a[i];
f[a[i]]++;
}
for (int i = 0; i <= MAXA; ++i) g[MAXA - i] = f[i];
SuperNTT :: work(f, g, MAXA + 1, MAXA + 1, res);
reverse(res, res + MAXA + 1);
int sum = 0;
for (int i = 1; i <= MAXA; ++i) {
add(sum, (ll)i * i % MOD * res[i] % MOD);
}
sum = (ll)sum * dp[n - 1] % MOD;
inv_n = pow_mod(n, MOD - 2);
ans = mod2((ll)sum * inv_n % MOD - (ll)sum * inv_n % MOD * inv_n % MOD);
sort(a + 1, a + m + 1);
for (int i = 1; i <= m; ++i) pre[i] = mod1(pre[i - 1] + a[i]);
for (int i = m; i >= 1; --i) suf[i] = mod1(suf[i + 1] + a[i]);
if (n >= 2) {
int sum = 0;
int tmp = 0;
// for (int i = 0; i <= MAXA; ++i) {
// for(int j = 0; j <= MAXA; ++j) {
// add(sum, (ll)res[i] * res[j] % MOD * i % MOD * j % MOD);
// }
// }
for (int i = 0; i <= MAXA; ++i) add(tmp, (ll)res[i] * i % MOD);
for (int i = 0; i <= MAXA; ++i) add(sum, (ll)tmp * res[i] % MOD * i % MOD);
// cerr << sum << endl;
for (int i = 1; i <= m; ++i) {
int x = mod2(suf[i + 1] - (ll)a[i] * (m - i) % MOD);
int y = mod2((ll)a[i] * (i - 1) % MOD - pre[i - 1]);
sub(sum, (ll)x * x % MOD);
sub(sum, (ll)y * y % MOD);
sub(sum, (ll)x * y * 2 % MOD);
}
// cerr << sum << endl;
for(int i = 0; i <= MAXA; ++i) {
add(sum, (ll)i * i % MOD * res[i] % MOD);
}
// cerr << sum << endl;
sum = (ll)sum * dp[n - 2] % MOD;
sub(ans, (ll)sum * inv_n % MOD * inv_n % MOD);
}
ans = (ll)ans * pow_mod(dp[n], MOD - 2) % MOD;
cout << ans << endl;
return 0;
}
typedef unsigned int uint;
typedef long long unsigned int uint64;
constexpr uint Max_size = 1 << 21 | 5;
constexpr uint g = 3, Mod = 998244353;
inline uint norm_2(const uint x)
{
return x < Mod * 2 ? x : x - Mod * 2;
}
inline uint norm(const uint x)
{
return x < Mod ? x : x - Mod;
}
struct Z
{
uint v;
Z() { }
Z(const uint _v) : v(_v) { }
};
inline Z operator+(const Z &x1, const Z &x2) { return x1.v + x2.v < Mod ? x1.v + x2.v : x1.v + x2.v - Mod; }
inline Z operator-(const Z &x1, const Z &x2) { return x1.v >= x2.v ? x1.v - x2.v : x1.v + Mod - x2.v; }
inline Z operator*(const Z &x1, const Z &x2) { return static_cast<uint64>(x1.v) * x2.v % Mod; }
inline Z &operator*=(Z &x1, const Z &x2) { x1.v = static_cast<uint64>(x1.v) * x2.v % Mod; return x1; }
Z Power(Z Base, int Exp)
{
Z res = 1;
for (; Exp; Base *= Base, Exp >>= 1)
if (Exp & 1)
res *= Base;
return res;
}
inline uint mf(uint x)
{
return (static_cast<uint64>(x) << 32) / Mod;
}
int size;
uint w[Max_size], w_[Max_size];
inline uint mult_Shoup_2(const uint x, const uint y, const uint y_)
{
uint q = static_cast<uint64>(x) * y_ >> 32;
return x * y - q * Mod;
}
inline uint mult_Shoup(const uint x, const uint y, const uint y_)
{
return norm(mult_Shoup_2(x, y, y_));
}
inline void init(int n)
{
for (size = 2; size < n; size <<= 1)
;
Z pr = Power(g, (Mod - 1) / size);
size >>= 1;
w[size] = 1, w_[size] = (static_cast<uint64>(w[size]) << 32) / Mod;
if (size <= 8)
{
for (int i = 1; i < size; ++i)
w[size + i] = (w[size + i - 1] * pr).v, w_[size + i] = (static_cast<uint64>(w[size + i]) << 32) / Mod;
}
else
{
for (int i = 1; i < 8; ++i)
w[size + i] = (w[size + i - 1] * pr).v, w_[size + i] = (static_cast<uint64>(w[size + i]) << 32) / Mod;
pr *= pr, pr *= pr, pr *= pr;
for (int i = 8; i < size; i += 8)
{
w[size + i + 0] = (w[size + i - 8] * pr).v, w_[size + i + 0] = (static_cast<uint64>(w[size + i + 0]) << 32) / Mod;
w[size + i + 1] = (w[size + i - 7] * pr).v, w_[size + i + 1] = (static_cast<uint64>(w[size + i + 1]) << 32) / Mod;
w[size + i + 2] = (w[size + i - 6] * pr).v, w_[size + i + 2] = (static_cast<uint64>(w[size + i + 2]) << 32) / Mod;
w[size + i + 3] = (w[size + i - 5] * pr).v, w_[size + i + 3] = (static_cast<uint64>(w[size + i + 3]) << 32) / Mod;
w[size + i + 4] = (w[size + i - 4] * pr).v, w_[size + i + 4] = (static_cast<uint64>(w[size + i + 4]) << 32) / Mod;
w[size + i + 5] = (w[size + i - 3] * pr).v, w_[size + i + 5] = (static_cast<uint64>(w[size + i + 5]) << 32) / Mod;
w[size + i + 6] = (w[size + i - 2] * pr).v, w_[size + i + 6] = (static_cast<uint64>(w[size + i + 6]) << 32) / Mod;
w[size + i + 7] = (w[size + i - 1] * pr).v, w_[size + i + 7] = (static_cast<uint64>(w[size + i + 7]) << 32) / Mod;
}
}
for (int i = size - 1; i; --i)
w[i] = w[i * 2], w_[i] = w_[i * 2];
size <<= 1;
}
inline void DFT_fr_2(Z _A[], const int L)
{
if (L == 1)
return;
uint *A = reinterpret_cast<uint *>(_A);
#define butterfly1(a, b)\
do\
{\
uint _a = a, _b = b;\
uint x = norm_2(_a + _b), y = norm_2(_a + Mod * 2 - _b);\
a = x, b = y;\
} while (0)
if (L == 2)
{
butterfly1(A[0], A[1]);
return;
}
#define butterfly(a, b, _w, _w_)\
do\
{\
uint _a = a, _b = b;\
uint x = norm_2(_a + _b), y = mult_Shoup_2(_a + Mod * 2 - _b, _w, _w_);\
a = x, b = y;\
} while (0)
if (L == 4)
{
butterfly1(A[0], A[2]);
butterfly(A[1], A[3], w[3], w_[3]);
butterfly1(A[0], A[1]);
butterfly1(A[2], A[3]);
return;
}
for (int d = L >> 1; d != 4; d >>= 1)
for (int i = 0; i != L; i += d << 1)
for (int j = 0; j != d; j += 4)
{
butterfly(A[i + j], A[i + d + j], w[d + j], w_[d + j]);
butterfly(A[i + j + 1], A[i + d + j + 1], w[d + j + 1], w_[d + j + 1]);
butterfly(A[i + j + 2], A[i + d + j + 2], w[d + j + 2], w_[d + j + 2]);
butterfly(A[i + j + 3], A[i + d + j + 3], w[d + j + 3], w_[d + j + 3]);
}
for (int i = 0; i != L; i += 8)
{
butterfly1(A[i], A[i + 4]);
butterfly(A[i + 1], A[i + 5], w[5], w_[5]);
butterfly(A[i + 2], A[i + 6], w[6], w_[6]);
butterfly(A[i + 3], A[i + 7], w[7], w_[7]);
}
for (int i = 0; i != L; i += 8)
{
butterfly1(A[i], A[i + 2]);
butterfly(A[i + 1], A[i + 3], w[3], w_[3]);
butterfly1(A[i + 4], A[i + 6]);
butterfly(A[i + 5], A[i + 7], w[3], w_[3]);
}
for (int i = 0; i != L; i += 8)
{
butterfly1(A[i], A[i + 1]);
butterfly1(A[i + 2], A[i + 3]);
butterfly1(A[i + 4], A[i + 5]);
butterfly1(A[i + 6], A[i + 7]);
}
#undef butterfly1
#undef butterfly
}
inline void IDFT_fr(Z _A[], const int L)
{
if (L == 1)
return;
uint *A = reinterpret_cast<uint *>(_A);
#define butterfly1(a, b)\
do\
{\
uint _a = a, _b = b;\
uint x = norm_2(_a), t = norm_2(_b);\
a = x + t, b = x + Mod * 2 - t;\
} while (0)
if (L == 2)
{
butterfly1(A[0], A[1]);
A[0] = norm(norm_2(A[0])), A[0] = A[0] & 1 ? A[0] + Mod : A[0], A[0] /= 2;
A[1] = norm(norm_2(A[1])), A[1] = A[1] & 1 ? A[1] + Mod : A[1], A[1] /= 2;
return;
}
#define butterfly(a, b, _w, _w_)\
do\
{\
uint _a = a, _b = b;\
uint x = norm_2(_a), t = mult_Shoup_2(_b, _w, _w_);\
a = x + t, b = x + Mod * 2 - t;\
} while (0)
if (L == 4)
{
butterfly1(A[0], A[1]);
butterfly1(A[2], A[3]);
butterfly1(A[0], A[2]);
butterfly(A[1], A[3], w[3], w_[3]);
std::swap(A[1], A[3]);
for (int i = 0; i != L; ++i)
{
uint64 m = -A[i] & 3;
A[i] = norm((A[i] + m * Mod) >> 2);
}
return;
}
for (int i = 0; i != L; i += 8)
{
butterfly1(A[i], A[i + 1]);
butterfly1(A[i + 2], A[i + 3]);
butterfly1(A[i + 4], A[i + 5]);
butterfly1(A[i + 6], A[i + 7]);
}
for (int i = 0; i != L; i += 8)
{
butterfly1(A[i], A[i + 2]);
butterfly(A[i + 1], A[i + 3], w[3], w_[3]);
butterfly1(A[i + 4], A[i + 6]);
butterfly(A[i + 5], A[i + 7], w[3], w_[3]);
}
for (int i = 0; i != L; i += 8)
{
butterfly1(A[i], A[i + 4]);
butterfly(A[i + 1], A[i + 5], w[5], w_[5]);
butterfly(A[i + 2], A[i + 6], w[6], w_[6]);
butterfly(A[i + 3], A[i + 7], w[7], w_[7]);
}
for (int d = 8; d != L; d <<= 1)
for (int i = 0; i != L; i += d << 1)
for (int j = 0; j != d; j += 4)
{
butterfly(A[i + j], A[i + d + j], w[d + j], w_[d + j]);
butterfly(A[i + j + 1], A[i + d + j + 1], w[d + j + 1], w_[d + j + 1]);
butterfly(A[i + j + 2], A[i + d + j + 2], w[d + j + 2], w_[d + j + 2]);
butterfly(A[i + j + 3], A[i + d + j + 3], w[d + j + 3], w_[d + j + 3]);
}
#undef butterfly1
#undef butterfly
std::reverse(A + 1, A + L);
int k = __builtin_ctz(L);
for (int i = 0; i != L; ++i)
{
uint64 m = -A[i] & (L - 1);
A[i] = norm((A[i] + m * Mod) >> k);
}
}
int N, M, L;
Z A[Max_size], B[Max_size];
void work(int f[], int g[], int n, int m, int res[]) {
N = n; M = m;
for(int i = 0; i < n; ++i) A[i].v = f[i];
for(int i = 0; i < m; ++i) B[i].v = g[i];
for (L = 2; L <= N + M - 2; L <<= 1)
;
init(L);
DFT_fr_2(A, L), DFT_fr_2(B, L);
for (int i = 0; i != L; ++i)
A[i] *= B[i];
IDFT_fr(A, L);
for(int i = 0; i < n; ++i) res[i] = A[i].v;
}