题解 LOJ3275 「JOISC 2020 Day2」有趣的 Joitter 交友

题目链接

把两个互相关注的人缩成一个集合。如果对于两个集合A,B,集合A中某个人关注了集合B中的某个人,集合B中的某个人也关注了集合A中的某个人(这四个人可以互不相同),则把A,B缩成一个大集合。以此类推。例如下图中,原有A,B两个集合,后来加入了\(a\rightarrow c\), \(d\rightarrow b\)两条边。此时如果搞活动,会带来\(a\rightarrow d\), \(d\rightarrow a\)两新的条边。接下来会有连锁反应,其结果是\(a\),\(b\),\(c\),\(d\)两两相互关注。这就是为什么我们可以把图缩成若干个“集合”,然后直接在集合间连边。

考虑一个集合\(S\),大小为\(sz(S)\)。如果有\(ine(S)\)条边连向这个集合(连向集合内的至少一个点),则集合\(S\)对答案的贡献是:\(sz(S)(sz(S)-1)+sz(S)ine(S)\)

我们用并查集维护这些集合。用\(\texttt{set}\)维护连向每个集合的边\(ine\)

考虑如何处理加边操作。加入一条边\(x\rightarrow y\)时,分三种情况讨论:

  • 如果\(x\),\(y\)已经在同一个集合内,则什么都不用做。
  • 如果\(y\)所在集合已经有了连向\(x\)所在集合的边,则把两个点所在集合合并。
  • 其他情况下,更新\(y\)所在集合的\(ine\)即可。

发现要判断:\(y\)所在集合是否有连向\(x\)所在集合的边。我们给每个集合再开两个\(\texttt{set}\),记录这个集合的入边、出边。注意这里的“出/入边”指的是集合之间的边。

合并两个集合时,用启发式合并。维护好每个集合相关信息的若干个\(\texttt{set}\)即可。注意,合并时可能会造成连锁反应,所以我们用一个队列,只要队列不为空,就不断取出队头,进行合并。

时间复杂度\(O(n\log^2n)\)

参考代码:

//problem:LOJ3275
#include <bits/stdc++.h>
using namespace std;

#define pb push_back
#define mk make_pair
#define lob lower_bound
#define upb upper_bound
#define fi first
#define se second
#define SZ(x) ((int)(x).size())

typedef unsigned int uint;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> pii;

namespace Fread{
const int MAXN=1<<20;
char buf[MAXN],*S,*T;
inline char getchar(){
	if(S==T){
		T=(S=buf)+fread(buf,1,MAXN,stdin);
		if(S==T)return EOF;
	}
	return *S++;
}
}//namespace Fread
#ifdef ONLINE_JUDGE
	#define getchar Fread::getchar
#endif
template<typename T>inline void read(T& x){
	x=0;int f=1;
	char ch=getchar();
	while(!isdigit(ch)){if(ch=='-')f=-1;ch=getchar();}
	while(isdigit(ch))x=x*10+(ch-'0'),ch=getchar();
	x*=f;
}
/*  ------  by:duyi  ------  */ // myt天下第一
const int MAXN=1e5;
int n,m,fa[MAXN+5];
ll ans;
set<int>points[MAXN+5],ine[MAXN+5],inp[MAXN+5],outp[MAXN+5];
queue<pii>q;

int get_fa(int x){return x==fa[x]?x:(fa[x]=get_fa(fa[x]));}
inline ll calc(int x){
	return (ll)points[x].size()*(points[x].size()-1)+(ll)ine[x].size()*points[x].size();
}
void _merge(int x,int y){
	x=get_fa(x);y=get_fa(y);if(x==y)return;
	// y -> x
	if(points[x].size()<points[y].size())swap(x,y);
	fa[y]=x;ans-=calc(x);ans-=calc(y);
	if(inp[x].count(y))inp[x].erase(y);
	if(outp[x].count(y))outp[x].erase(y);
	for(set<int>::iterator it=points[y].begin();it!=points[y].end();++it){
		int v=(*it);
		points[x].insert(v);
		if(ine[x].count(v))ine[x].erase(v);
	}
	for(set<int>::iterator it=ine[y].begin();it!=ine[y].end();++it){
		int v=(*it);
		if(!points[x].count(v)){
			ine[x].insert(v);
		}
	}
	for(set<int>::iterator it=inp[y].begin();it!=inp[y].end();++it){
		int v=(*it);
		if(v!=x){
			outp[v].erase(y);
			outp[v].insert(x);
			if(outp[x].count(v)){
				q.push(mk(x,v));
			}
			else inp[x].insert(v);
		}
	}
	for(set<int>::iterator it=outp[y].begin();it!=outp[y].end();++it){
		int v=(*it);
		if(v!=x){
			inp[v].erase(y);
			inp[v].insert(x);
			if(inp[x].count(v)){
				q.push(mk(x,v));
			}
			else outp[x].insert(v);
		}
	}
	ans+=calc(x);
}
void merge_points(){
	while(!q.empty()){
		int x=q.front().fi,y=q.front().se;
		q.pop();_merge(x,y);
	}
}
int main() {
	read(n);read(m);
	for(int i=1;i<=n;++i)fa[i]=i,points[i].insert(i);
	while(m--){
		int x,y;read(x);read(y);
		if(get_fa(x)==get_fa(y)){printf("%lld\n",ans);continue;}
		
		if(inp[get_fa(x)].count(get_fa(y))){
			q.push(mk(x,y));
			merge_points();
		}
		else if(!ine[get_fa(y)].count(x)){
			ans-=calc(get_fa(y));
			ine[get_fa(y)].insert(x);
			inp[get_fa(y)].insert(get_fa(x));
			outp[get_fa(x)].insert(get_fa(y));
			ans+=calc(get_fa(y));
		}
		printf("%lld\n",ans);
	}
	return 0;
}
posted @ 2020-04-02 14:35  duyiblue  阅读(418)  评论(3编辑  收藏  举报