2020系统综合实践 第4次实践作业
1.使用Docker-compose实现Tomcat+Nginx负载均衡
(1)理解反向代理原理
正向代理是代理客户端,为客户端收发请求,使真实客户端对服务器不可见;而反向代理是代理服务器端,为服务器收发请求,使真实服务器对客户端不可见。
(2)nginx代理tomcat集群,代理2个以上tomcat
编写docker-compose.yml
version: "3"
services:
tomcat001:
image: tomcat:8.5.0
ports:
- "8083:8080"
restart: "always"
container_name: tomcat001
volumes:
- ./tomcat1:/usr/local/tomcat/webapps/ROOT
tomcat002:
image: tomcat:8.5.0
ports:
- "8082:8080"
container_name: tomcat002
restart: "always"
volumes:
- ./tomcat2:/usr/local/tomcat/webapps/ROOT
nginx:
image: nginx
volumes:
- ./nginx/default.conf:/etc/nginx/nginx.conf
ports:
- "81:80"
links:
- tomcat001:t01
- tomcat002:t02
编写default.conf
user nginx;
worker_processes 1;
error_log /var/log/nginx/error.log warn;
pid /var/run/nginx.pid;
events {
worker_connections 1024;
}
http {
include /etc/nginx/mime.types;
default_type application/octet-stream;
log_format main '$remote_addr - $remote_user [$time_local] "$request" '
'$status $body_bytes_sent "$http_referer" '
'"$http_user_agent" "$http_x_forwarded_for"';
access_log /var/log/nginx/access.log main;
sendfile on;
#tcp_nopush on;
keepalive_timeout 65;
#gzip on;
#include /etc/nginx/conf.d/*.conf;
upstream tomcat_client {
server t01:8080 ;
server t02:8080 ;
}
server {
server_name "";
listen 80 default_server;
listen [::]:80 default_server ipv6only=on;
location / {
proxy_pass http://tomcat_client;
proxy_redirect default;
proxy_set_header Host $host;
proxy_set_header X-Real-IP $remote_addr;
}
}
}
编写两个html文件(以其中一个为例)
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<title>tomcat</title>
</head>
<body>
<h1>tomcat1</h1>
</body>
</html>
文件结构如下
构建
sudo docker-compose up -d --build
访问localhost:81,轮流出现两个网页
(3)了解nginx的负载均衡策略,并至少实现nginx的2种负载均衡策略
先安装一下python
sudo apt-get install python3
1.轮询策略
python文件
import requests
url="http://localhost:81"
for i in range(0,10):
reponse=requests.get(url)
print(reponse.text)
两者出现的次数相当
2.权重策略
python文件
import requests
url="http://localhost:81"
context={}
for i in range(0,100):
response=requests.get(url)
if response.text in context:
context[response.text]+=1
else:
context[response.text]=1
print(context)
修改default.conf
upstream tomcat_client {
server t01:8080 weight=3;
server t02:8080 weight=1;
}
然后重启容器
运行python文件多次,结果均为1:3
2.使用Docker-compose部署javaweb运行环境
(1)使用老师给的javaweb参考项目
进入项目对应目录,修改连接数据库的IP
cd /home/lzz/webapps/ssmgrogshop_war/WEB-INF/classes
vim jdbc.properties
项目结构图如下
创建并启动容器服务
docker-compose up -d
在web上访问
进行数据库的增加操作,增加一名假面骑士做为旅客
进行数据库的修改操作,将黄旭林的性别改为女
进行数据库的删除操作,删除黄旭林
(2)添加nginx反向代理服务,实现负载均衡
default.conf
upstream tomcats{
server tt1:8080 ;
server tt2:8080 ;
server tt3:8080 ;
}
server {
listen 2508;
server_name localhost;
location / {
root /usr/share/nginx/html;
index index.html index.htm;
proxy_pass http://tomcats;
}
}
docker-compose.yml
version: '2'
services:
tomcat01:
image: tomcat
hostname: hostname
container_name: tomcat4
ports:
- "5050:8080"
volumes:
- "$PWD/webapps:/usr/local/tomcat/webapps"
networks:
webnet:
ipv4_address: 15.22.0.15
tomcat02:
image: tomcat
container_name: tomcat5
ports:
- "5051:8080"
volumes:
- "$PWD/webapps:/usr/local/tomcat/webapps"
networks:
webnet:
ipv4_address: 15.22.0.16
mymysql:
build: .
image: mymysql:test
container_name: mymysql
ports:
- "3306:3306"
command: [
'--character-set-server=utf8mb4',
'--collation-server=utf8mb4_unicode_ci'
]
environment:
MYSQL_ROOT_PASSWORD: "123456"
networks:
webnet:
ipv4_address: 15.22.0.6
nginx:
image: nginx
ports:
- "8080:8080"
volumes:
- ./default.conf:/etc/nginx/conf.d/default.conf # 挂载配置文件
networks:
webnet:
driver: bridge
ipam:
config:
- subnet: 15.22.0.0/24
gateway: 15.22.0.2
重新构建
docker-compose up -d
5050和5051都可以访问酒店管理系统
3.使用Docker搭建大数据集群环境
(1)hadoop分布式集群环境配置,至少包含三个节点(一个master,两个slave)
pull Ubuntu镜像
docker pull ubuntu
创建build文件 运行容器
docker run -it -v /home/dyssl/build:/root/build --name ubuntu ubuntu
更新系统源软件
apt-get update
安装vim
vim apt-get install vim
安装sshd
apt-get install ssh
开启sshd服务器
/etc/init.d/ssh start
在该文件中最后一行添加如下内容,实现进入Ubuntu系统时,都能自动启动sshd服务
vim ~/.bashrc
/etc/init.d/ssh start
获取密匙
ssh-keygen -t rsa
免密登入sshd
sshd cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys
安装jdk
jdk apt install openjdk-8-jdk
在文件末尾添加以下两行,配置Java环境变量
vim ~/.bashrc
export JAVA_HOME=/usr/lib/jvm/java-8-openjdk-amd64/
export PATH=$PATH:$JAVA_HOME/bin
使.bashrc生效,查看java版本
source ~/.bashrc
java -version
新打开一个终端,将该容器保存为镜像
docker commit cab159840beb ubuntu/jdk
把hadoop的安装包放在~/目录下,然后执行以下代码安装hadoop
cd /root/build
tar -zxvf hadoop-3.1.3.tar.gz -C /usr/local
验证hadoop安装
cd /usr/local/hadoop-3.1.3
./bin/hadoop version
在顶部添加如下代码
Vim hadoop-env.sh
export JAVA_HOME=/usr/lib/jvm/java-8-openjdk-amd64/
vim core-site.xml
<configuration>
<property>
<name>hadoop.tmp.dir</name>
<value>file:/usr/local/hadoop-3.1.3/tmp</value>
<description>Abase for other temporary directories.</description>
</property>
<property>
<name>fs.defaultFS</name>
<value>hdfs://master:9000</value>
</property>
</configuration>
vim hdfs-site.xml
<configuration>
<property>
<name>dfs.namenode.name.dir</name>
<value>file:/usr/local/hadoop-3.1.3/namenode_dir</value>
</property>
<property>
<name>dfs.datanode.data.dir</name>
<value>file:/usr/local/hadoop-3.1.3/datanode_dir</value>
</property>
<property>
<name>dfs.replication</name>
<value>3</value>
</property>
</configuration>
vim mapred-site.xml
<configuration>
<property>
<!--使用yarn运行MapReduce程序-->
<name>mapreduce.framework.name</name>
<value>yarn</value>
</property>
<property>
<!--jobhistory地址host:port-->
<name>mapreduce.jobhistory.address</name>
<value>master:10020</value>
</property>
<property>
<!--jobhistory的web地址host:port-->
<name>mapreduce.jobhistory.webapp.address</name>
<value>master:19888</value>
</property>
<property>
<!--指定MR应用程序的类路径-->
<name>mapreduce.application.classpath</name>
<value>/usr/local/hadoop-3.1.3/share/hadoop/mapreduce/lib/*,/usr/local/hadoop-3.1.3/share/hadoop/mapreduce/*</value>
</property>
</configuration>
Vim yarn-site.xml
<configuration>
<property>
<name>yarn.resourcemanager.hostname</name>
<value>master</value>
</property>
<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
</property>
<property>
<name>yarn.nodemanager.vmem-pmem-ratio</name>
<value>2.5</value>
</property>
</configuration>
修改脚本文件,cd /usr/local/hadoop-3.1.3/sbin,分别修改start-dfs.sh和stop-dfs.sh,在其中添加如下代码
HDFS_DATANODE_USER=root
HADOOP_SECURE_DN_USER=hdfs
HDFS_NAMENODE_USER=root
HDFS_SECONDARYNAMENODE_USER=root
修改start-yarn.sh和stop-yarn.sh,添加下面的代码
YARN_RESOURCEMANAGER_USER=root
HADOOP_SECURE_DN_USER=yarn
YARN_NODEMANAGER_USER=root
打开新的终端保存镜像
docker commit cab159840beb ubuntu/hadoopinstalled
从三个终端分别开启三个容器运行ubuntu/hadoopinstalled镜像,分别表示Hadoop集群中的master,slave01和slave02
sudo docker run -it -h master --name master ubuntu/hadoopinstalled
sudo docker run -it -h slave01 --name slave01 ubuntu/hadoopinstalled
sudo docker run -it -h slave02 --name slave02 ubuntu/hadoopinstalled
vim /etc/hosts根据各自ip修改成如下形式
172.17.0.3 master
172.17.0.4 slave01
172.17.0.5 slave02
在master结点测试ssh;连接到slave1结点
ssh slave01
在master结点测试ssh;连接到slave2结点
ssh slave02
修改master上workers文件
vim /usr/local/hadoop-3.1.3/etc/hadoop/workers
slave01
slave02
在master上测试hadoop集群
cd /usr/local/hadoop-3.1.3
bin/hdfs namenode -format #首次启动Hadoop需要格式化
sbin/start-all.sh #启动所有服务
jps #分别查看三个终端
运行hadoop实例
/bin/hdfs dfs -mkdir -p /user/hadoop/input
bin/hdfs dfs -put ./etc/hadoop/*.xml /user/hadoop/input
bin/hdfs dfs -ls /user/hadoop/input
执行程序实例
bin/hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-3.1.3.jar grep /user/hadoop/input output 'dfs[a-z.]+'
查看运行结果
./bin/hdfs dfs -cat output/*
4.感想
javaweb门槛真的有点高,最后还是用老师给的项目,难度一下子就降下来了,按照老师写的博客来做很快就能出结果。然后最后一个实验由于之前在大数据的实践课上做过类似的,所以做起来熟悉感比较强,踩坑就很少。总的来说耗时还是比较多,参考了很多同学的博客让我实际做起来轻松了不少
5.耗时
实验一:2小时
实验二:3小时
实验三:4小时
博客编写:1.5小时
合计:10.5小时