poj 1068 Parencodings (模拟)
Parencodings
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 17169 | Accepted: 10296 |
Description
Let S = s1 s2...s2n be a well-formed string of parentheses. S can be encoded in two different ways:
q By an integer sequence P = p1 p2...pn where pi is the number of left parentheses before the ith right parenthesis in S (P-sequence).
q By an integer sequence W = w1 w2...wn where for each right parenthesis, say a in S, we associate an integer which is the number of right parentheses counting from the matched left parenthesis of a up to a. (W-sequence).
Following is an example of the above encodings:
Write a program to convert P-sequence of a well-formed string to the W-sequence of the same string.
q By an integer sequence P = p1 p2...pn where pi is the number of left parentheses before the ith right parenthesis in S (P-sequence).
q By an integer sequence W = w1 w2...wn where for each right parenthesis, say a in S, we associate an integer which is the number of right parentheses counting from the matched left parenthesis of a up to a. (W-sequence).
Following is an example of the above encodings:
S (((()()()))) P-sequence 4 5 6666 W-sequence 1 1 1456
Write a program to convert P-sequence of a well-formed string to the W-sequence of the same string.
Input
The first line of the input contains a single integer t (1 <= t <= 10), the number of test cases, followed by the input data for each test case. The first line of each test case is an integer n (1 <= n <= 20), and the second line is the P-sequence of a well-formed string. It contains n positive integers, separated with blanks, representing the P-sequence.
Output
The output file consists of exactly t lines corresponding to test cases. For each test case, the output line should contain n integers describing the W-sequence of the string corresponding to its given P-sequence.
Sample Input
2 6 4 5 6 6 6 6 9 4 6 6 6 6 8 9 9 9
Sample Output
1 1 1 4 5 6 1 1 2 4 5 1 1 3 9
Source
题意:
对于给出的原括号串,存在两种数字密码串:
1.p序列:当出现匹配括号对时,从该括号对的右括号开始往左数,直到最前面的左括号数,就是pi的值。
2.w序列:当出现匹配括号对时,包含在该括号对中的所有右括号数(包括该括号对),就是wi的值。
题目的要求:对给出的p数字串,求出对应的s串。串长均<=20.
提示:在处理括号序列时可以使用一个小技巧,把括号序列转化为01序列,左0右1,处理时比较方便
代码:
#include<cstdio> #include<iostream> #include<cstring> using namespace std; int p[30]; int w[30]; int s[100]; int main() { int t,n,i,j,k,q; int sum1,sum2,head,rear,t1,t2,headw,rearw; scanf("%d",&t); while(t--) { sum1=0,sum2=0,head=0,rear=0; scanf("%d",&n); for(i=0;i<n;i++) { scanf("%d",&p[i]); if(sum1<p[i]) { for(j=0;j<p[i]-sum1;j++) s[rear++]=0; sum1=p[i]; } s[rear++]=1; sum2++; } rearw=headw=0; while(head!=rear) { t1=0,t2=0; if(s[head]==1) { t1++; if(s[head-1]==0) w[rearw++]=1; else { t1++; q=head-1; while(t1!=t2) { q--; if(s[q]==0) t2++; else t1++; } w[rearw++]=t1; } head++; } else head++; } for(k=0;k<rearw;k++) printf("%d%c",w[k],k==rearw-1?'\n':' '); } return 0; }
11924371 |
Accepted |
144K |
0MS |
1426B |
2013-08-05 16:19:34 |