URAL 1062 - Triathlon(半平面交)
这个题乍眼一看好像很简单,然后我就认为u、v、w只要有全部比另外一个人小的就不能win,否则就能win,但是这个思路只对了一半
不能win的结论是正确的,但是win的结论不止排除这一个条件
将这个人与其他人的条件列式
如果都win的话,则满足 x/v+y/u+(k-x-y)/w(i的)<x/v+y/u+(k-x-y)/w(j的)由此构成n条直线(半平面),然后求交,如果有交集,则输出Yes,否则No
#include <stdio.h> #include <math.h> #include <algorithm> using namespace std; const double eps = 1e-8; struct Point { double x,y; Point(double x=0,double y=0):x(x),y(y) {} }; typedef Point Vector; Vector operator - (Point A, Point B) { return Vector(A.x-B.x, A.y-B.y); } struct Line { Point p; Vector v; double ang; Line() {} Line(Point p,Vector v):p(p),v(v) { ang=atan2(v.y,v.x); } bool operator < (const Line& L) const { return ang<L.ang; } }; double Cross(Vector A, Vector B) { return A.x*B.y - A.y*B.x; } bool Onleft(Line L, Point p) { return Cross(L.v, p-L.p)>0; } Point GetIntersection(Line a, Line b) { Vector u = a.p-b.p; double t = Cross(b.v, u)/Cross(a.v, b.v); return Point(a.p.x+a.v.x*t, a.p.y+a.v.y*t); } int BPMJ(Line *L, int n, Point *poly) { sort(L,L+n); int first,last; Point *p = new Point[n]; Line *q = new Line[n]; q[first=last=0] = L[0]; for(int i=1; i<n; i++) { while(first<last && !Onleft(L[i],p[last-1]))last--; while(first<last && !Onleft(L[i],p[first]))first++; q[++last] = L[i]; if(fabs(Cross(q[last].v,q[last-1].v))<eps) { last--; if(Onleft(q[last], L[i].p))q[last] = L[i]; } if(first<last) p[last-1] = GetIntersection(q[last-1], q[last]); } while(first<last && !Onleft(q[first], p[last-1])) last--; if(last-first<=1)return 0; p[last] = GetIntersection(q[last], q[first]); int m = 0; for(int i=first; i<=last; i++) poly[m++] = p[i]; return m; } double k=10000.0; int u[110],v[110],w[110]; Point poly[110]; Line L[110]; int main() { int n; while(scanf("%d",&n)==1) { for(int i=0; i<n; i++) { scanf("%d%d%d",&u[i],&v[i],&w[i]); } for(int i=0; i<n; i++) { int f=0; for(int j=0; j<n; j++) { if(j!=i && u[i]<=u[j] && v[i]<=v[j] && w[i]<=w[j]) { f=1; break; } } if(f==1) printf("No\n"); else { Point p; int ct=0; for(int j=0; j<n; j++) { if(j!=i && u[i]>=u[j] && v[i]>=v[j] && w[i]>=w[j]) continue; else if(j!=i) { double A=k/v[j]-k/v[i]-k/w[j]+k/w[i]; double B=k/u[j]-k/u[i]-k/w[j]+k/w[i]; double C=k/w[j]-k/w[i]; if(fabs(A)>fabs(B)) p=Point(-C/A,0); else p=Point(0,-C/B); Vector v(B,-A); L[ct++] = Line(p,v); } } L[ct++] = Line(Point(0,0), Vector(0,-1)); L[ct++] = Line(Point(0,0), Vector(1,0)); L[ct++] = Line(Point(0,1), Vector(-1,1)); if(BPMJ(L,ct,poly))printf("Yes\n"); else printf("No\n"); } } } return 0; }