Nginx 负载均衡-加权轮询策略剖析
负载均衡模块简介
回调指针 |
函数功能 |
round_robin模块 |
IP_hash模块 |
uscf->peer.init_upstream |
解析配置文件过程中调用,根据upstream里各个server配置项做初始准备工作,另外的核心工作是设置回调指针us->peer.init。配置文件解析完后不再被调用 |
ngx_http_upstream_init_round_robin 设置:us->peer.init = ngx_http_upstream_init_round_robin_peer; |
ngx_http_upstream_init_ip_hash 设置:us->peer.init = ngx_http_upstream_init_ip_hash_peer; |
us->peer.init |
在每一次Nginx准备转发客户端请求到后端服务器前都会调用该函数。该函数为本次转发选择合适的后端服务器做初始准备工作,另外的核心工作是设置回调指针r->upstream->peer.get和r->upstream->peer.free等 |
ngx_http_upstream_init_round_robin_peer 设置:r->upstream->peer.get = ngx_http_upstream_get_round_robin_peer; r->upstream->peer.free = ngx_http_upstream_free_round_robin_peer; |
ngx_http_upstream_init_ip_hash_peer 设置:r->upstream->peer.get = ngx_http_upstream_get_ip_hash_peer; r->upstream->peer.free为空 |
r->upstream->peer.get |
在每一次Nginx准备转发客户端请求到后端服务器前都会调用该函数。该函数实现具体的位本次转发选择合适的后端服务器的算法逻辑,即完成选择获取合适后端服务器的功能 |
ngx_http_upstream_get_round_robin_peer 加权选择当前权值最高的后端服务器 |
ngx_http_upstream_get_ip_hash_peer 根据IP哈希值选择后端服务器 |
r->upstream->peer.free |
在每一次Nginx完成与后端服务器之间的交互后都会调用该函数。 |
ngx_http_upstream_free_round_robin_peer 更新相关数值,比如rrp->current |
空 |
负载均衡配置指令
upstream backend { server backend1.example.com weight=5; server backend2.example.com:8080; server unix:/tmp/backend3; server backup1.example.com:8080 backup; server backup2.example.com:8080 backup; } server { location / { proxy_pass http://backend; } }
upstream backend { server backend1.example.com weight=5; server 127.0.0.1:8080 max_fails=3 fail_timeout=30s; server unix:/tmp/backend3; }
upstream backend { server backend1.example.com weight=5; server 127.0.0.1:8080 max_fails=3 fail_timeout=30s; server unix:/tmp/backend3; server backup1.example.com:8080 backup; }
upstream backend { ip_hash; server backend1.example.com; server backend2.example.com; server backend3.example.com down; server backend4.example.com; }
upstream memcached_backend { server 127.0.0.1:11211; server 10.0.0.2:11211; keepalive 32; } server { ... location /memcached/ { set $memcached_key $uri; memcached_pass memcached_backend; } }
负载均衡策略
nginx的负载均衡策略可以划分为两大类:内置策略和扩展策略。内置策略包含加权轮询和ip hash,在默认情况下这两种策略会编译进nginx内核,只需在nginx配置中指明参数即可。扩展策略有很多,如fair、通用hash、consistent hash等,默认不编译进nginx内核,是第三方模块。
nginx 的 upstream目前支持 4 种方式的分配 :
1)轮询(默认)
每个请求按时间顺序逐一分配到不同的后端服务器,如果后端服务器down掉,能自动剔除。
2)weight
指定轮询几率,weight和访问比率成正比,用于后端服务器性能不均的情况。
2)ip_hash
每个请求按访问ip的hash结果分配,这样每个访客固定访问一个后端服务器,可以解决session的问题。
3)fair(第三方)
按后端服务器的响应时间来分配请求,响应时间短的优先分配。
4)url_hash(第三方)
Nginx默认采用round_robin加权算法。如果要选择其他的负载均衡算法,必须在upstream的配置上下文中通过配置指令ip_hash明确指定(该配置项最好放在其他server指令等的前面,以便检查server的配置选项是否合理)。比如采用Ip_hash的upstream配置如下所示:
upstream load_balance{ ip_hash; server localhost:8001; server localhost:8002; }当整个http配置块被Nginx解析完毕之后,会调用各个http模块对应的初始函数。对于模块ngx_http_upstream_module而言,对应的main配置初始函数是ngx_http_upstream_init_main_conf(),在这个函数中有这样一段代码:
for (i = 0; i < umcf->upstreams.nelts; i++) { init = uscfp[i]->peer.init_upstream ? uscfp[i]->peer.init_upstream: ngx_http_upstream_init_round_robin; if (init(cf, uscfp[i]) != NGX_OK) { return NGX_CONF_ERROR; } }
加权轮询策略
全局准备工作
typedef struct { ngx_addr_t *addrs;//指向存储IP地址的数组的指针,host信息(对应的是 ngx_url_t->addrs ) ngx_uint_t naddrs;//与第一个参数配合使用,数组元素个数(对应的是 ngx_url_t->naddrs ) ngx_uint_t weight; ngx_uint_t max_fails; time_t fail_timeout; unsigned down:1; unsigned backup:1; } ngx_http_upstream_server_t;
us->peer.init = ngx_http_upstream_init_round_robin_peer;
us类型是ngx_http_upstream_srv_conf_t:
typedef struct ngx_http_upstream_srv_conf_s ngx_http_upstream_srv_conf_t; struct ngx_http_upstream_srv_conf_s { ngx_http_upstream_peer_t peer; void **srv_conf;//在 ngx_http_upstream()函数中被设置,指向的是本层的srv_conf ngx_array_t *servers; /*array of ngx_http_upstream_server_t */ ngx_uint_t flags;//调用函数时ngx_http_upstream_add() 指定的标记 ngx_str_t host;//在函数 ngx_http_upstream_add() 中设置(e.g. upstream backend中的backend) u_char *file_name;//"/usr/local/nginx/conf/nginx.conf" ngx_uint_t line;//proxy在配置文件中的行号 in_port_t port;//使用的端口号(ngx_http_upstream_add()函数中添加, 指向ngx_url_t-->port,通常在函数ngx_parse_inet_url()中解析) in_port_t default_port;//默认使用的端口号(ngx_http_upstream_add()函数中添加, 指向ngx_url_t-->default_port) ngx_uint_t no_port; /* unsigned no_port:1 */ };
typedef struct { //使用负载均衡的类型,默认采用 ngx_http_upstream_init_round_robin() ngx_http_upstream_init_pt init_upstream; //使用的负载均衡类型的初始化函数 ngx_http_upstream_init_peer_pt init; //us->peer.data = peers; 指向的是 ngx_http_upstream_rr_peers_t(函数 ngx_http_upstream_init_round_robin()中设置) void *data; } ngx_http_upstream_peer_t;
ngx_http_upstream_init_peer_pt 是函数指针类型:
typedef ngx_int_t (*ngx_http_upstream_init_peer_pt)(ngx_http_request_t *r, ngx_http_upstream_srv_conf_t *us);
typedef struct { ngx_str_t url; //保存IP地址+端口信息(e.g. 192.168.124.129:8011 或 money.163.com) ngx_str_t host; //保存IP地址信息 ngx_str_t port_text; //保存port字符串 ngx_str_t uri; //uri部分,在函数ngx_parse_inet_url()中设置 in_port_t port; //端口,e.g. listen指令中指定的端口(listen 192.168.124.129:8011) in_port_t default_port; //默认端口(当no_port字段为真时,将默认端口赋值给port字段, 默认端口通常是80) int family; //address family, AF_xxx unsigned listen:1; //是否为指监听类的设置 unsigned uri_part:1; unsigned no_resolve:1; //根据情况决定是否解析域名(将域名解析到IP地址) unsigned one_addr:1; //等于1时,仅有一个IP地址 unsigned no_port:1; //标识url中没有显示指定端口(为1时没有指定) unsigned wildcard:1; //标识是否使用通配符(e.g. listen *:8000;) socklen_t socklen; //sizeof(struct sockaddr_in) u_char sockaddr[NGX_SOCKADDRLEN]; //sockaddr_in结构指向它 ngx_addr_t *addrs; //数组大小是naddrs字段;每个元素对应域名的IP地址信息(struct sockaddr_in),在函数中赋值(ngx_inet_resolve_host()) ngx_uint_t naddrs; //url对应的IP地址个数,IP格式的地址将默认为1 char *err; //错误信息字符串 } ngx_url_t;
此函数会创建后端服务器列表,并且将非后备服务器与后备服务器分开进行各自单独的链表。每一个后端服务器用一个结构体ngx_http_upstream_rr_peer_t与之对应(ngx_http_upstream_round_robin.h):
typedef struct { struct sockaddr *sockaddr;//后端服务器地址 socklen_t socklen;//后端服务器地址长度 ngx_str_t name;//后端名称 ngx_int_t current_weight;//当前权重,nginx会在运行过程中调整此权重 ngx_int_t effective_weight; ngx_int_t weight;//配置的权重 ngx_uint_t fails;//已尝试失败次数 time_t accessed;//检测失败时间,用于计算超时 time_t checked; ngx_uint_t max_fails;//最大失败次数 time_t fail_timeout;//多长时间内出现max_fails次失败便认为后端down掉了 ngx_uint_t down; /* unsigned down:1; *///指定某后端是否挂了 #if (NGX_HTTP_SSL) ngx_ssl_session_t *ssl_session; /* local to a process */ #endif } ngx_http_upstream_rr_peer_t;
列表最前面需要带有一些head信息,用结构体ngx_http_upstream_rr_peers_t与之对应:
typedef struct ngx_http_upstream_rr_peers_s ngx_http_upstream_rr_peers_t; struct ngx_http_upstream_rr_peers_s { ngx_uint_t number;//队列中服务器数量 /* ngx_mutex_t *mutex; */ ngx_uint_t total_weight;//所有服务器总权重 unsigned single:1;//为1表示后端服务器总共只有一台,用于优化,此时不需要再做选择 unsigned weighted:1;//为1表示总的权重值等于服务器数量 ngx_str_t *name; ngx_http_upstream_rr_peers_t *next;//后备服务器列表挂载在这个字段下 ngx_http_upstream_rr_peer_t peer[1]; };
//函数:初始化服务器负载均衡表 //参数: //us:ngx_http_upstream_main_conf_t结构体中upstreams数组元素 ngx_int_t ngx_http_upstream_init_round_robin(ngx_conf_t *cf, ngx_http_upstream_srv_conf_t *us) { ngx_url_t u; ngx_uint_t i, j, n, w; ngx_http_upstream_server_t *server; ngx_http_upstream_rr_peers_t *peers, *backup; //回调指针设置 us->peer.init = ngx_http_upstream_init_round_robin_peer; //服务器数组指针不为空 if (us->servers) { server = us->servers->elts; n = 0; w = 0; //遍历所有服务器 for (i = 0; i < us->servers->nelts; i++) { //是后备服务器,跳过 if (server[i].backup) { continue; } //服务器地址数量统计 n += server[i].naddrs; //总的权重计算 w += server[i].naddrs * server[i].weight; } if (n == 0) { ngx_log_error(NGX_LOG_EMERG, cf->log, 0, "no servers in upstream \"%V\" in %s:%ui", &us->host, us->file_name, us->line); return NGX_ERROR; } //为非后备服务器分配空间 peers = ngx_pcalloc(cf->pool, sizeof(ngx_http_upstream_rr_peers_t) + sizeof(ngx_http_upstream_rr_peer_t) * (n - 1)); if (peers == NULL) { return NGX_ERROR; } //非后备服务器列表头中各属性设置 peers->single = (n == 1); peers->number = n; peers->weighted = (w != n); peers->total_weight = w; peers->name = &us->host; n = 0; //后备服务器列表中各服务器项设置 for (i = 0; i < us->servers->nelts; i++) { for (j = 0; j < server[i].naddrs; j++) { if (server[i].backup) { continue; } peers->peer[n].sockaddr = server[i].addrs[j].sockaddr; peers->peer[n].socklen = server[i].addrs[j].socklen; peers->peer[n].name = server[i].addrs[j].name; peers->peer[n].max_fails = server[i].max_fails; peers->peer[n].fail_timeout = server[i].fail_timeout; peers->peer[n].down = server[i].down; peers->peer[n].weight = server[i].weight; peers->peer[n].effective_weight = server[i].weight; peers->peer[n].current_weight = 0; n++; } } //非后备服务器列表挂载的位置 us->peer.data = peers; /* backup servers */ //后备服务器 n = 0; w = 0; for (i = 0; i < us->servers->nelts; i++) { if (!server[i].backup) { continue; } //后备服务器地址数量统计 n += server[i].naddrs; //后备服务器总权重计算 w += server[i].naddrs * server[i].weight; } if (n == 0) { return NGX_OK; } //后备服务器列表地址空间分配 backup = ngx_pcalloc(cf->pool, sizeof(ngx_http_upstream_rr_peers_t) + sizeof(ngx_http_upstream_rr_peer_t) * (n - 1)); if (backup == NULL) { return NGX_ERROR; } peers->single = 0; //后备服务器列表头中各属性设置 backup->single = 0; backup->number = n; backup->weighted = (w != n); backup->total_weight = w; backup->name = &us->host; n = 0; //后备服务器列表中各服务器项设置 for (i = 0; i < us->servers->nelts; i++) { for (j = 0; j < server[i].naddrs; j++) { if (!server[i].backup) { continue; } backup->peer[n].sockaddr = server[i].addrs[j].sockaddr; backup->peer[n].socklen = server[i].addrs[j].socklen; backup->peer[n].name = server[i].addrs[j].name; backup->peer[n].weight = server[i].weight; backup->peer[n].effective_weight = server[i].weight; backup->peer[n].current_weight = 0; backup->peer[n].max_fails = server[i].max_fails; backup->peer[n].fail_timeout = server[i].fail_timeout; backup->peer[n].down = server[i].down; n++; } } //后备服务器挂载 peers->next = backup; return NGX_OK; } //us参数中服务器指针为空,例如用户直接在proxy_pass等指令后配置后端服务器地址 /* an upstream implicitly defined by proxy_pass, etc. */ if (us->port == 0) { ngx_log_error(NGX_LOG_EMERG, cf->log, 0, "no port in upstream \"%V\" in %s:%ui", &us->host, us->file_name, us->line); return NGX_ERROR; } ngx_memzero(&u, sizeof(ngx_url_t)); u.host = us->host; u.port = us->port; //IP地址解析 if (ngx_inet_resolve_host(cf->pool, &u) != NGX_OK) { if (u.err) { ngx_log_error(NGX_LOG_EMERG, cf->log, 0, "%s in upstream \"%V\" in %s:%ui", u.err, &us->host, us->file_name, us->line); } return NGX_ERROR; } n = u.naddrs; peers = ngx_pcalloc(cf->pool, sizeof(ngx_http_upstream_rr_peers_t) + sizeof(ngx_http_upstream_rr_peer_t) * (n - 1)); if (peers == NULL) { return NGX_ERROR; } peers->single = (n == 1); peers->number = n; peers->weighted = 0; peers->total_weight = n; peers->name = &us->host; for (i = 0; i < u.naddrs; i++) { peers->peer[i].sockaddr = u.addrs[i].sockaddr; peers->peer[i].socklen = u.addrs[i].socklen; peers->peer[i].name = u.addrs[i].name; peers->peer[i].weight = 1; peers->peer[i].effective_weight = 1; peers->peer[i].current_weight = 0; peers->peer[i].max_fails = 1; peers->peer[i].fail_timeout = 10; } us->peer.data = peers; /* implicitly defined upstream has no backup servers */ return NGX_OK; }
选择后端服务器
static void ngx_http_upstream_init_request(ngx_http_request_t *r) { ... if (uscf->peer.init(r, uscf) != NGX_OK) { ngx_http_upstream_finalize_request(r, u, NGX_HTTP_INTERNAL_SERVER_ERROR); return; } ngx_http_upstream_connect(r, u); }
//函数: //功能:针对每个请求选择后端服务器前做一些初始化工作 ngx_int_t ngx_http_upstream_init_round_robin_peer(ngx_http_request_t *r, ngx_http_upstream_srv_conf_t *us) { ngx_uint_t n; ngx_http_upstream_rr_peer_data_t *rrp; rrp = r->upstream->peer.data; if (rrp == NULL) { rrp = ngx_palloc(r->pool, sizeof(ngx_http_upstream_rr_peer_data_t)); if (rrp == NULL) { return NGX_ERROR; } r->upstream->peer.data = rrp; } rrp->peers = us->peer.data; rrp->current = 0; //n取值为:非后备服务器和后备服务器列表中个数较大的那个值 n = rrp->peers->number; if (rrp->peers->next && rrp->peers->next->number > n) { n = rrp->peers->next->number; } //如果n小于一个指针变量所能表示的范围 if (n <= 8 * sizeof(uintptr_t)) { //直接使用已有的指针类型的data变量做位图(tried是位图,用来标识在一轮选择中,各个后端服务器是否已经被选择过) rrp->tried = &rrp->data; rrp->data = 0; } else { //否则从内存池中申请空间 n = (n + (8 * sizeof(uintptr_t) - 1)) / (8 * sizeof(uintptr_t)); rrp->tried = ngx_pcalloc(r->pool, n * sizeof(uintptr_t)); if (rrp->tried == NULL) { return NGX_ERROR; } } //回调函数设置 r->upstream->peer.get = ngx_http_upstream_get_round_robin_peer; r->upstream->peer.free = ngx_http_upstream_free_round_robin_peer; r->upstream->peer.tries = rrp->peers->number; #if (NGX_HTTP_SSL) r->upstream->peer.set_session = ngx_http_upstream_set_round_robin_peer_session; r->upstream->peer.save_session = ngx_http_upstream_save_round_robin_peer_session; #endif return NGX_OK; }
//函数: //功能:对后端服务器做一次选择 ngx_int_t ngx_http_upstream_get_round_robin_peer(ngx_peer_connection_t *pc, void *data) { ngx_http_upstream_rr_peer_data_t *rrp = data; ngx_int_t rc; ngx_uint_t i, n; ngx_http_upstream_rr_peer_t *peer; ngx_http_upstream_rr_peers_t *peers; ngx_log_debug1(NGX_LOG_DEBUG_HTTP, pc->log, 0, "get rr peer, try: %ui", pc->tries); /* ngx_lock_mutex(rrp->peers->mutex); */ pc->cached = 0; pc->connection = NULL; //如果只有一台后端服务器,Nginx直接选择并返回 if (rrp->peers->single) { peer = &rrp->peers->peer[0]; if (peer->down) { goto failed; } } else { //有多台后端服务器 /* there are several peers */ //按照各台服务器的当前权值进行选择 peer = ngx_http_upstream_get_peer(rrp); if (peer == NULL) { goto failed; } ngx_log_debug2(NGX_LOG_DEBUG_HTTP, pc->log, 0, "get rr peer, current: %ui %i", rrp->current, peer->current_weight); } //设置连接的相关属性 pc->sockaddr = peer->sockaddr; pc->socklen = peer->socklen; pc->name = &peer->name; /* ngx_unlock_mutex(rrp->peers->mutex); */ if (pc->tries == 1 && rrp->peers->next) { pc->tries += rrp->peers->next->number; } return NGX_OK; //选择失败,转向后备服务器 failed: peers = rrp->peers; if (peers->next) { /* ngx_unlock_mutex(peers->mutex); */ ngx_log_debug0(NGX_LOG_DEBUG_HTTP, pc->log, 0, "backup servers"); rrp->peers = peers->next; pc->tries = rrp->peers->number; n = (rrp->peers->number + (8 * sizeof(uintptr_t) - 1)) / (8 * sizeof(uintptr_t)); for (i = 0; i < n; i++) { rrp->tried[i] = 0; } rc = ngx_http_upstream_get_round_robin_peer(pc, rrp); if (rc != NGX_BUSY) { return rc; } /* ngx_lock_mutex(peers->mutex); */ } /* all peers failed, mark them as live for quick recovery */ for (i = 0; i < peers->number; i++) { peers->peer[i].fails = 0; } /* ngx_unlock_mutex(peers->mutex); */ pc->name = peers->name; //如果后备服务器也选择失败,则返回NGX_BUSY return NGX_BUSY; }
后端服务器权值计算在函数ngx_http_upstream_get_peer中。
//按照当前各服务器权值进行选择 static ngx_http_upstream_rr_peer_t * ngx_http_upstream_get_peer(ngx_http_upstream_rr_peer_data_t *rrp) { time_t now; uintptr_t m; ngx_int_t total; ngx_uint_t i, n; ngx_http_upstream_rr_peer_t *peer, *best; now = ngx_time(); best = NULL; total = 0; for (i = 0; i < rrp->peers->number; i++) { //计算当前服务器的标记位在位图中的位置 n = i / (8 * sizeof(uintptr_t)); m = (uintptr_t) 1 << i % (8 * sizeof(uintptr_t)); //已经选择过,跳过 if (rrp->tried[n] & m) { continue; } //当前服务器对象 peer = &rrp->peers->peer[i]; //当前服务器已宕机,排除 if (peer->down) { continue; } //根据指定一段时间内最大失败次数做判断 if (peer->max_fails && peer->fails >= peer->max_fails && now - peer->checked <= peer->fail_timeout) { continue; } peer->current_weight += peer->effective_weight; total += peer->effective_weight; if (peer->effective_weight < peer->weight) { peer->effective_weight++; } if (best == NULL || peer->current_weight > best->current_weight) { best = peer; } } if (best == NULL) { return NULL; } //所选择的服务器在服务器列表中的位置 i = best - &rrp->peers->peer[0]; rrp->current = i; n = i / (8 * sizeof(uintptr_t)); m = (uintptr_t) 1 << i % (8 * sizeof(uintptr_t)); //位图相应位置置位 rrp->tried[n] |= m; best->current_weight -= total; best->checked = now; return best; }
ngx_int_t current_weight; ngx_int_t effective_weight; ngx_int_t weight;
for (i = 0; i < us->servers->nelts; i++) { for (j = 0; j < server[i].naddrs; j++) { if (server[i].backup) { continue; } peers->peer[n].weight = server[i].weight; peers->peer[n].effective_weight = server[i].weight; peers->peer[n].current_weight = 0; n++; } } /* backup servers */ for (i = 0; i < us->servers->nelts; i++) { for (j = 0; j < server[i].naddrs; j++) { if (!server[i].backup) { continue; } backup->peer[n].weight = server[i].weight; backup->peer[n].effective_weight = server[i].weight; backup->peer[n].current_weight = 0; n++; } } /* an upstream implicitly defined by proxy_pass, etc. */ for (i = 0; i < u.naddrs; i++) { peers->peer[i].weight = 1; peers->peer[i].effective_weight = 1; peers->peer[i].current_weight = 0; }
//服务正常,effective_weight 逐渐恢复正常 if (peer->effective_weight < peer->weight) { peer->effective_weight++; }
if (peer->max_fails) { //服务发生异常时,调低effective_weight peer->effective_weight -= peer->weight / peer->max_fails; }
selected server |
current_weight beforeselected |
current_weight afterselected |
a |
{ 5, 1, 2 } |
{ -3, 1, 2 } |
c |
{ 2, 2, 4 } |
{ 2, 2, -4 } |
a |
{ 7, 3, -2 } |
{ -1, 3, -2 } |
a |
{ 4, 4, 0 } |
{ -4, 4, 0 } |
b |
{ 1, 5, 2 } |
{ 1, -3, 2 } |
a |
{ 6, -2, 4 } |
{ -2, -2, 4 } |
c |
{ 3, -1, 6 } |
{ 3, -1, -2 } |
a |
{ 8, 0, 0 } |
{ 0, 0, 0 } |
释放后端服务器
//函数: //功能:释放后端服务器 void ngx_http_upstream_free_round_robin_peer(ngx_peer_connection_t *pc, void *data, ngx_uint_t state) { ngx_http_upstream_rr_peer_data_t *rrp = data; time_t now; ngx_http_upstream_rr_peer_t *peer; ngx_log_debug2(NGX_LOG_DEBUG_HTTP, pc->log, 0, "free rr peer %ui %ui", pc->tries, state); /* TODO: NGX_PEER_KEEPALIVE */ //后端服务只有一个 if (rrp->peers->single) { pc->tries = 0; return; } peer = &rrp->peers->peer[rrp->current]; //在某一轮选择里,某次选择的服务器因连接失败或请求处理失败而需要重新进行选择 if (state & NGX_PEER_FAILED) { now = ngx_time(); /* ngx_lock_mutex(rrp->peers->mutex); */ //已尝试失败次数加一 peer->fails++; peer->accessed = now; peer->checked = now; //如果有最大失败次数限制 if (peer->max_fails) { //服务发生异常时,调低effective_weight peer->effective_weight -= peer->weight / peer->max_fails; } ngx_log_debug2(NGX_LOG_DEBUG_HTTP, pc->log, 0, "free rr peer failed: %ui %i", rrp->current, peer->effective_weight); //effective_weight总大于0 if (peer->effective_weight < 0) { peer->effective_weight = 0; } /* ngx_unlock_mutex(rrp->peers->mutex); */ } else { /* mark peer live if check passed */ if (peer->accessed < peer->checked) { peer->fails = 0; } } //ngx_peer_connection_t结构体中tries字段: //表示在连接一个远端服务器时,当前连接出现异常失败后可以重试的次数,也就是允许失败的次数 if (pc->tries) { pc->tries--; } /* ngx_unlock_mutex(rrp->peers->mutex); */ }
整个加权轮询的流程
static char * ngx_http_upstream_init_main_conf(ngx_conf_t *cf, void *conf) { ... for (i = 0; i < umcf->upstreams.nelts; i++) { //全局初始化 init = uscfp[i]->peer.init_upstream ? uscfp[i]->peer.init_upstream: ngx_http_upstream_init_round_robin; if (init(cf, uscfp[i]) != NGX_OK) { return NGX_CONF_ERROR; } } ... }收到客户请求之后,针对当前请求进行初始化,完成此功能的函数是ngx_http_upstream_init_round_robin_peer,它在函数ngx_http_upstream_init_request中被调用:
static void ngx_http_upstream_init_request(ngx_http_request_t *r) { ... if (uscf->peer.init(r, uscf) != NGX_OK) { ngx_http_upstream_finalize_request(r, u, NGX_HTTP_INTERNAL_SERVER_ERROR); return; } ngx_http_upstream_connect(r, u); }然后是针对每个请求选择后端服务器,实现此功能的函数是ngx_http_upstream_get_round_robin_peer。它在函数ngx_event_connect_peer中被调用:
//函数:连接后端upstream ngx_int_t ngx_event_connect_peer(ngx_peer_connection_t *pc) { ... //此处调用选择后端服务器功能函数ngx_http_upstream_get_round_robin_peer rc = pc->get(pc, pc->data); if (rc != NGX_OK) { return rc; } s = ngx_socket(pc->sockaddr->sa_family, SOCK_STREAM, 0); ... }之后是测试连接ngx_http_upstream_test_connect。它在函数ngx_http_upstream_send_request被调用:
//函数:发送数据到后端upstream static void ngx_http_upstream_send_request(ngx_http_request_t *r, ngx_http_upstream_t *u) { ... if (!u->request_sent && ngx_http_upstream_test_connect(c) != NGX_OK) { //测试连接失败 ngx_http_upstream_next(r, u, NGX_HTTP_UPSTREAM_FT_ERROR); return; } ... }
static void ngx_http_upstream_next(ngx_http_request_t *r, ngx_http_upstream_t *u, ngx_uint_t ft_type) { ... if (u->peer.sockaddr) { if (ft_type == NGX_HTTP_UPSTREAM_FT_HTTP_404) { state = NGX_PEER_NEXT; } else { state = NGX_PEER_FAILED; } //释放后端服务器 u->peer.free(&u->peer, u->peer.data, state); u->peer.sockaddr = NULL; } ... if (status) { u->state->status = status; if (u->peer.tries == 0 || !(u->conf->next_upstream & ft_type)) { #if (NGX_HTTP_CACHE) if (u->cache_status == NGX_HTTP_CACHE_EXPIRED && (u->conf->cache_use_stale & ft_type)) { ngx_int_t rc; rc = u->reinit_request(r); if (rc == NGX_OK) { u->cache_status = NGX_HTTP_CACHE_STALE; rc = ngx_http_upstream_cache_send(r, u); } ngx_http_upstream_finalize_request(r, u, rc); return; } #endif //结束请求 ngx_http_upstream_finalize_request(r, u, status); return; } } ... //再次发起连接 ngx_http_upstream_connect(r, u); }
参考资料:
http://www.cnblogs.com/xiaogangqq123/archive/2011/03/04/1971002.html
http://tengine.taobao.org/book/chapter_05.html#id5
http://blog.dccmx.com/2011/07/nginx-upsream-src-2/
http://nginx-source-analysis.googlecode.com/svn-history/r151/trunk/src/http/ngx_http_upstream.h
http://www.inginx.org/thread-89-1-1.html
http://blog.sina.com.cn/s/blog_7303a1dc01014i0j.html
https://github.com/phusion/nginx/commit/27e94984486058d73157038f7950a0a36ecc6e35
http://www.pagefault.info/?p=251
http://www.pagefault.info/?p=259