卷积神经网络与普通神经网络的区别在于,卷积神经网络包含多个由卷积层和池化层构成的特征抽取器。在卷积神经网络的卷积层中,一个神经元只与部分邻层神经元连接。在CNN的一个卷积层中,通常包含若干个特征平面(featureMap),每个特征平面由一些矩形排列的的神经元组成,同一特征平面的神经元共享权值,这里共享的权值就是卷积核。卷积核一般以随机小数矩阵的形式初始化,在网络的训练过程中卷积核将学习得到合理的权值。共享权值(卷积核)带来的直接好处是减少网络各层之间的连接,同时又降低了过拟合的风险。子采样也叫做池化(pooling),通常有均值子采样(mean pooling)和最大值子采样(max pooling)两种形式。子采样可以看作一种特殊的卷积过程。卷积和子采样大大简化了模型复杂度,减少了模型的参数。
神经网络的公式推导:
神经网络的每个单元如下:
其对应的公式如下:
其中,该单元也可以被称作是Logistic回归模型。当将多个单元组合起来并具有分层结构时,就形成了神经网络模型。下图展示了一个具有一个隐含层的神经网络。
其对应的公式如下:
多层的神经网络和这个比较类,神经网络可以扩展到有2,3,4,5,…个隐含层。
神经网络的训练方法也同Logistic类似,不过由于其多层性,还需要利用链式求导法则对隐含层的节点进行求导,即梯度下降+链式求导法则,专业名称为反向传播。
卷积的公式:
卷积的概念,高等数学里面才接触到,大学没有好好学习的同学,是不是此处要泪奔了:
它的物理意义大概可以理解为:系统某一时刻的输出是由多个输入共同作用(叠加)的结果。放在图像分析里,f(x) 可以理解为原始像素点(source pixel),所有的原始像素点叠加起来,就是原始图了。
h(T)可以称为作用点,所有作用点合起来我们称为卷积核(Convolution kernel)
微积分中卷积的表达式为:
离散形式是:
这个式子如果用矩阵表示可以为:
其中星号表示卷积。
如果是二维的卷积,则表示式为:
在CNN中,虽然我们也是说卷积,但是我们的卷积公式和严格意义数学中的定义稍有不同,比如对于二维的卷积,定义为:
这个式子虽然从数学上讲不是严格意义上的卷积,但是大牛们都这么叫了,那么我们也跟着这么叫了。其中,我们叫W为我们的卷积核,而X则为我们的输入。如果X是一个二维输入的矩阵,而W也是一个二维的矩阵。但是如果X是多维张量,那么W也是一个多维的张量。
今日格言:心伤也不是坏事,说明你曾经付出过
献给正在为梦想付出的人
参考文档:
1 https://zhuanlan.zhihu.com/p/25249694
作者:虚生 出处:https://www.cnblogs.com/dylancao/ 以音频和传感器算法为核心的智能可穿戴产品解决方案提供商 ,提供可穿戴智能软硬件解决方案的设计,开发和咨询服务。 勾搭热线:邮箱:1173496664@qq.com weixin:18019245820 市场技术对接群:347609188 |