【CLRS】《算法导论》读书笔记(三):计数排序(Counting sort)、基数排序(Radix sort)和桶排序(Bucket sort)
计数排序(Counting sort)
维基百科:http://en.wikipedia.org/wiki/Counting_sort
时间复杂度:O(n)
技术排序的基本思想:对每一个输入元素 x ,确定小于 x 的元素个数。利用这一信息,就可以直接把 x 放到它在输出数组中的位置上了。
伪码:
COUNTING-SORT(A, B, k)
let C[0 .. k] be a new array
for i = 0 to k
C[i] = 0
for j = 1 to A.length
C[A[j]] = C[A[j]] + 1
// C[i] now contains the number of elements equal to i.
for i = 1 to k
C[i] = C[i] + C[i - 1]
// C[i] now contains the number of elements less than or equal to i.
for j = A. length downto 1
B[C[A[j]]] = A[j]
C[A[j]] = C[A[j]] - 1
基数排序(Radix sort)
维基百科:http://en.wikipedia.org/wiki/Radix_sort
最差时间复杂度:O(k n),其中k为位数
基数排序分类:LSD(Least Significant Digital)和MSD(Most Signifacant Digital)
LSD伪码:
RADIX-SORT(A, d)
for i = 1 to d
use a stable sort to sort array A on digit i
桶排序(Bucket sort)
维基百科:http://en.wikipedia.org/wiki/Bucket_sort
平均时间复杂度:O(n)
Bucket sort works as follows:
- Set up an array of initially empty "buckets."
- Scatter: Go over the original array, putting each object in its bucket.
- Sort each non-empty bucket.
- Gather: Visit the buckets in order and put all elements back into the original array.
伪码:
BUCKET-SORT(A)
n = A.length
let B[0 .. n - 1] be a new array
for i = 0 to n - 1
make B[i] an empty list
for i = 1 to n
insert A[i] into list B[nA[i]]
for i = 0 to n -1
sort list B[i] with insertion sort
concatenate the list B[0], B[1], ..., B[n -1] together in order
iOS 开发讨论群:82873648
本作品采用知识共享署名-非商业性使用 3.0 许可协议进行许可。
转载请署名李震(博客地址:http://www.cnblogs.com/dyingbleed/),且不得用于商业目的。
博客园博客已停止更新,博客地址:dyingbleed.com