卷积神经网络识别mnist手写数据集
卷积神经网络识别mnist手写数据集
import torch
import torch.nn.functional as F
from torchvision import transforms
from torchvision import datasets
from torch.utils.data import DataLoader
import torch.optim as optim
import matplotlib.pyplot as plt
batch_size = 4
#转变数形
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307, ),(0.3081, )) ])
#加载数据
train_dataset = datasets.MNIST(root='../data/j/', train=True, download=True, transform=transform)
train_loader = DataLoader(train_dataset, shuffle=True, batch_size=batch_size)
test_dataset = datasets.MNIST(root='../data/j/', train=False, download=True, transform=transform)
test_loader = DataLoader(test_dataset, shuffle=False, batch_size=batch_size)
'''cnn网络模型'''
class Net(torch.nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = torch.nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = torch.nn.Conv2d(10, 20, kernel_size=5)
self.pooling = torch.nn.MaxPool2d(2)
self.fc = torch.nn.Linear(320, 10)
def forward(self, x):
# Flatten data from (n, 1, 28, 28) to (n, 784)
batch_size = x.size(0)
x = F.relu(self.pooling(self.conv1(x)))
x = F.relu(self.pooling(self.conv2(x)))
x = x.view(batch_size, -1) # flatten
x = self.fc(x)
return x
net1 = Net()
#损失函数
criterion = torch.nn.CrossEntropyLoss()
#优化器
optimizer = optim.SGD(net1.parameters(), lr=0.01, momentum=0.5)
def train(epoch):
running_loss = 0.0
for batch_idx, data in enumerate(train_loader, 0):
inputs, target = data
optimizer.zero_grad()
# forward + backward + update
outputs = net1(inputs)
loss = criterion(outputs, target)
loss.backward()
optimizer.step()
running_loss += loss.item()
if batch_idx % 300 == 299:
print('[%d, %5d] loss: %.3f' % (epoch + 1, batch_idx + 1, running_loss / 2000))
running_loss = 0.0
def imshow(inputs, picname):
plt.ion()
inputs = inputs / 2 + 0.5 # 加载数据集的时候使用了正则化,需要恢复一下
inputs = inputs.numpy().transpose((1, 2, 0)) # pytorch加载图片通道数在前,我们展示图片图片的时候通道数在后
plt.imshow(inputs)
# plt.show()
plt.pause(1)
plt.savefig(picname + '.jpg') # 保存图片
plt.close()
#测试
def test(modele):
correct = 0
total = 0
with torch.no_grad():
for data in test_loader:
images, labels = data
outputs = modele(images)
_, predicted = torch.max(outputs.data, dim=1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('识别正确率为: %d %%' % (100 * correct / total))
#提取训练数据
def restore_net():
net2=torch.load('cnn_1.plk')
return net2
if __name__ == '__main__':
'''
for epoch in range(5):
train(epoch)
test(net1)
# 保存训练结果
torch.save(net1, 'cnn_1.plk')
'''
net2 = restore_net()
test(net2)
相比较使用Linear线性层构建网络模型,卷积神经网络模型可以使正确率达到98%
运行结果
本文作者:发呆鱼
本文链接:https://www.cnblogs.com/dyiblog/articles/15929762.html
版权声明:本作品采用知识共享署名-非商业性使用-禁止演绎 2.5 中国大陆许可协议进行许可。
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步