识别mnist手写数据集
识别mnist手写数据集
加载数据集
#转变数形
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307, ),(0.3081, )) ])
#加载数据
batch_size = 4
train_dataset = datasets.MNIST(root='../data/j/', train=True, download=True, transform=transform)
train_loader = DataLoader(train_dataset, shuffle=True, batch_size=batch_size)
test_dataset = datasets.MNIST(root='../data/j/', train=False, download=True, transform=transform)
test_loader = DataLoader(test_dataset, shuffle=False, batch_size=batch_size)
神经网络模型
class Net(torch.nn.Module):
def __init__(self):
super(Net, self).__init__()
self.l1 = torch.nn.Linear(784, 512)
self.l2 = torch.nn.Linear(512, 256)
self.l3 = torch.nn.Linear(256, 128)
self.l4 = torch.nn.Linear(128, 64)
self.l5 = torch.nn.Linear(64, 10)
#前向传播
def forward(self, x):
x = x.view(-1, 784)
x = F.relu(self.l1(x))
x = F.relu(self.l2(x))
x = F.relu(self.l3(x))
x = F.relu(self.l4(x))
return self.l5(x)
代码
import torch
from torchvision import transforms
from torchvision import datasets
from torch.utils.data import DataLoader
import torch.nn.functional as F
import torch.optim as optim
import numpy as np
import matplotlib.pyplot as plt
batch_size = 4
#转变数形
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307, ),(0.3081, )) ])
#加载数据
train_dataset = datasets.MNIST(root='../data/j/', train=True, download=True, transform=transform)
train_loader = DataLoader(train_dataset, shuffle=True, batch_size=batch_size)
test_dataset = datasets.MNIST(root='../data/j/', train=False, download=True, transform=transform)
test_loader = DataLoader(test_dataset, shuffle=False, batch_size=batch_size)
#神经网络模型
class Net(torch.nn.Module):
def __init__(self):
super(Net, self).__init__()
self.l1 = torch.nn.Linear(784, 512)
self.l2 = torch.nn.Linear(512, 256)
self.l3 = torch.nn.Linear(256, 128)
self.l4 = torch.nn.Linear(128, 64)
self.l5 = torch.nn.Linear(64, 10)
#前向传播
def forward(self, x):
x = x.view(-1, 784)
x = F.relu(self.l1(x))
x = F.relu(self.l2(x))
x = F.relu(self.l3(x))
x = F.relu(self.l4(x))
return self.l5(x)
model = Net()
#损失函数
criterion = torch.nn.CrossEntropyLoss()
#优化器
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)
#神经网络训练
def train(epoch):
running_loss = 0.0
for batch_idx, data in enumerate(train_loader, 0):
#数据
inputs, target = data
#梯度清0
optimizer.zero_grad()
#前向传播
outputs = model(inputs)
#计算损失
loss = criterion(outputs, target)
#反向传播
loss.backward()
#更新参数
optimizer.step()
running_loss += loss.item()
if batch_idx % 300 == 299:
print('[%d, %5d] loss: %.3f' % (epoch + 1, batch_idx + 1, running_loss / 300))
running_loss = 0.0
#测试
def test(modele):
correct = 0
total = 0
with torch.no_grad():
for data in test_loader:
images, labels = data
outputs = modele(images)
_, predicted = torch.max(outputs.data, dim=1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('识别正确率为: %d %%' % (100 * correct / total))
#提取训练数据
def restore_net():
net2=torch.load('modeltrain.plk')
return net2
#测试2
def recotes():
dataiter=iter(train_loader)
img,lables=dataiter.next()
net2 = restore_net()
#test(net2)
im=img
for im in img:
im = np.array(im)
im = im.reshape(28, 28)
plt.imshow(im, cmap='gray')
plt.show()
print('实际标签'+str(lables))
outputs = net2(img)
_, predicted = torch.max(outputs.data, dim=1)
print('预测标签'+str(predicted))
if __name__ == '__main__':
'''
for epoch in range(5):
train(epoch)
#保存训练结果
#torch.save(model,'modeltrain.plk')
'''
net2 = restore_net()
test(net2)
recotes()
运行结果
本文作者:发呆鱼
本文链接:https://www.cnblogs.com/dyiblog/articles/15929759.html
版权声明:本作品采用知识共享署名-非商业性使用-禁止演绎 2.5 中国大陆许可协议进行许可。
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步