HDU 1003 Max Sum (动态规划 最大区间和)
Max Sum
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 330535 Accepted Submission(s): 78678
Problem Description
Given a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max sum of a sub-sequence. For example, given (6,-1,5,4,-7), the max sum in this sequence is 6 + (-1) + 5 + 4 = 14.
Input
The
first line of the input contains an integer T(1<=T<=20) which
means the number of test cases. Then T lines follow, each line starts
with a number N(1<=N<=100000), then N integers followed(all the
integers are between -1000 and 1000).
Output
For
each test case, you should output two lines. The first line is "Case
#:", # means the number of the test case. The second line contains three
integers, the Max Sum in the sequence, the start position of the
sub-sequence, the end position of the sub-sequence. If there are more
than one result, output the first one. Output a blank line between two
cases.
Sample Input
2 5 6 -1 5 4 -7 7 0 6 -1 1 -6 7 -5
Sample Output
Case 1: 14 1 4 Case 2: 7 1 6
题目大意与分析
就是给你一个序列,求最大区间和以及该最大区间的下标
动态规划的思想:
用dp[i]来代表以a[i]为结尾的最大区间和,这样就有两种情况:
要么dp[i]是正的 那么以a[i]结尾的最大区间和就是dp[i-1]+a[i](因为必须是a[i]结尾,a[i]是正是负都无法取舍的)
要么dp[i]是负的 那么以a[i]结尾的最大区间和就是a[i]
状态转移方程:dp[i] = max( dp[i-1]+a[i], a[i] );
初始化:因为我们从前往后推,可以将dp数组和a数组合二为一,节约空间
另外需要注意的是 需要三个游标:s、l、r 分别代表当前区间的左端点、最大区间的左端点、最大区间的右断点,至于当前区间的右端点,可以直接用i表示。
代码
#include<bits/stdc++.h> using namespace std; int T,n,i,dp[100005],l,r,s,maxs,t=0; int main() { cin>>T; while(T--) { t++; memset(dp,0,sizeof(dp)); cin>>n; for(i=1;i<=n;i++) { scanf("%d",&dp[i]); } maxs=dp[1]; s=1; l=1; r=1; for(i=2;i<=n;i++) { dp[i]=max(dp[i-1]+dp[i],dp[i]); if(dp[i-1]<0) { s=i; } if(dp[i]>maxs) { l=s; r=i; maxs=dp[i]; } } printf("Case %d:\n",t); printf("%d %d %d\n",maxs,l,r); if(T) printf("\n"); } }