mmdetection 模型转ncnn后 在c++端增加后处理到完整输出


CMakeList 内容:

cmake_minimum_required(VERSION 3.14)
project(demo)

set(CMAKE_CXX_STANDARD 17)


include_directories(3rd_party/stb)

find_package(OpenCV REQUIRED)
if (OpenCV_FOUND)
    message("${OpenCV_DIR}")
    message(STATUS "The Opecv lib is found!")
endif ()
include_directories(${OpenCV_INCLUDE_DIRS})

add_definitions(-w)


set(THREADS_PREFER_PTHREAD_FLAG ON)
find_package(Threads)
include_directories(3rd_party/ncnn-20220729/include)
link_directories(3rd_party/ncnn-20220729/lib)


add_executable(...)
target_link_libraries(demo ${OpenCV_LIBS} ${CMAKE_THREAD_LIBS_INIT} ncnn)

 

// 准备一个 后处理头文件

#ifndef _NCNN_POSTPROCESS_H
#define _NCNN_POSTPROCESS_H


#include "ncnn/net.h"

#ifndef FLT_MIN
#define FLT_MIN 1.175494351e-38F
#endif

#ifndef FLT_MAX
#define FLT_MAX 3.402823466e+38F
#endif

#define MIN(a, b) (a<b?a:b)
#define MAX(a, b) (a>b?a:b)


// 参考 ncnn/example/nanodet.cpp
// 参考 ncnn/src/layer/detectionoutput.cpp

struct BBoxRect {
    float score;
    float xmin;
    float ymin;
    float xmax;
    float ymax;
    float area;
    int label;
};

static inline int ncnn_softmax_inplace(ncnn::Mat &bottom_blob, const int axis = 1) {
    // value = exp( value - global max value )
    // sum all value
    // value = value / sum
    ncnn::Layer *_layer = ncnn::create_layer("Softmax");
    ncnn::ParamDict pd;
    pd.set(0, axis); // axis
    pd.set(1, 1);
    _layer->load_param(pd);

    ncnn::Option opt;
    opt.num_threads = 1;
    opt.use_packing_layout = false;
    _layer->create_pipeline(opt);
    _layer->forward_inplace(bottom_blob, opt);
    _layer->destroy_pipeline(opt);

    delete _layer;
    return 0;
}

static inline int ncnn_sigmoid_inplace(ncnn::Mat &bottom_blob) {
    ncnn::Layer *_layer = ncnn::create_layer("Sigmoid");
    ncnn::ParamDict pd;
    _layer->load_param(pd);

    ncnn::Option opt;
    opt.num_threads = 1;
    opt.use_packing_layout = false;
    _layer->create_pipeline(opt);
    _layer->forward_inplace(bottom_blob, opt);
    _layer->destroy_pipeline(opt);

    delete _layer;
    return 0;
}


static inline int ncnn_permute(const ncnn::Mat &bottom_blob, ncnn::Mat &top_blob) {
    // [c,h,w] --> [h,w,c]
    ncnn::ParamDict pd;
    pd.set(0,3);
    ncnn::Layer *_layer = ncnn::create_layer("Permute");
    _layer->load_param(pd);
    ncnn::Option opt;
    opt.num_threads = 1;
    _layer->create_pipeline(opt);
    _layer->forward(bottom_blob, top_blob, opt);
    _layer->destroy_pipeline(opt);
    delete _layer;
    return 0;
}

static inline int ncnn_reshape(const ncnn::Mat &bottom_blob, ncnn::Mat &top_blob, const ncnn::ParamDict &pd) {
    // [h,w,c] --> [-1, c]
    ncnn::Layer *_layer = ncnn::create_layer("Reshape");
    _layer->load_param(pd);

    ncnn::Option opt;
    opt.num_threads = 1;
    _layer->create_pipeline(opt);
    _layer->forward(bottom_blob, top_blob, opt);
    _layer->destroy_pipeline(opt);
    delete _layer;
    return 0;
}

// copy from ncnn  === begin
static inline float intersection_area(const BBoxRect &a, const BBoxRect &b) {
    if (a.xmin > b.xmax || a.xmax < b.xmin || a.ymin > b.ymax || a.ymax < b.ymin) {
        // no intersection
        return 0.f;
    }

    float inter_width = std::min(a.xmax, b.xmax) - std::max(a.xmin, b.xmin);
    float inter_height = std::min(a.ymax, b.ymax) - std::max(a.ymin, b.ymin);

    return inter_width * inter_height;
}

static inline void qsort_descent_inplace(std::vector<BBoxRect> &datas, int left, int right) {

    int i = left;
    int j = right;
    float p = datas[(left + right) / 2].score;

    while (i <= j) {
        while (datas[i].score > p)
            i++;

        while (datas[j].score < p)
            j--;

        if (i <= j) {
            // swap
            std::swap(datas[i], datas[j]);

            i++;
            j--;
        }
    }

    if (left < j)
        qsort_descent_inplace(datas, left, j);

    if (i < right)
        qsort_descent_inplace(datas, i, right);
}

static inline void nms_sorted_bboxes(const std::vector<BBoxRect> &bboxes, std::vector<int> &picked,
                                     float nms_threshold) {
    picked.clear();

    const size_t n = bboxes.size();

    for (size_t i = 0; i < n; i++) {
        const BBoxRect &a = bboxes[i];

        int keep = 1;
        for (int j = 0; j < (int) picked.size(); j++) {
            const BBoxRect &b = bboxes[picked[j]];

            // intersection over union
            float inter_area = intersection_area(a, b);
            float union_area = a.area + b.area - inter_area;
            // float IoU = inter_area / union_area
            if (inter_area > nms_threshold * union_area) {
                keep = 0;
                break;
            }
        }

        if (keep)
            picked.push_back(i);
    }
}


// yolo的模式, 在线生成anchor, 从中心点生成, 每个中心点生成1个
static void generate_proposals(const ncnn::Mat &cls_pred, const ncnn::Mat &dis_pred, int stride,
                               const ncnn::Mat &in_pad, float prob_threshold,
                               std::vector<BBoxRect> &objects) {
    const int num_grid = cls_pred.h;

    int num_grid_x;
    int num_grid_y;
    if (in_pad.w > in_pad.h) {
        num_grid_x = in_pad.w / stride;
        num_grid_y = num_grid / num_grid_x;
    } else {
        num_grid_y = in_pad.h / stride;
        num_grid_x = num_grid / num_grid_y;
    }

    const int num_class = cls_pred.w;
    const int reg_max_1 = dis_pred.w / 4;

    for (int i = 0; i < num_grid_y; i++) {
        for (int j = 0; j < num_grid_x; j++) {
            const int idx = i * num_grid_x + j;

            const float *scores = cls_pred.row(idx);

            // find label with max score
            int label = -1;
            float score = -FLT_MAX;
            for (int k = 0; k < num_class; k++) {
                if (scores[k] > score) {
                    label = k;
                    score = scores[k];
                }
            }

            if (score >= prob_threshold) {
                ncnn::Mat bbox_pred(reg_max_1, 4, (void *) dis_pred.row(idx));
                {
                    ncnn::Layer *softmax = ncnn::create_layer("Softmax");

                    ncnn::ParamDict pd;
                    pd.set(0, 1); // axis
                    pd.set(1, 1);
                    softmax->load_param(pd);

                    ncnn::Option opt;
                    opt.num_threads = 1;
                    opt.use_packing_layout = false;

                    softmax->create_pipeline(opt);

                    softmax->forward_inplace(bbox_pred, opt);

                    softmax->destroy_pipeline(opt);

                    delete softmax;
                }

                float pred_ltrb[4];
                for (int k = 0; k < 4; k++) {
                    float dis = 0.f;
                    const float *dis_after_sm = bbox_pred.row(k);
                    for (int l = 0; l < reg_max_1; l++) {
                        dis += l * dis_after_sm[l];
                    }

                    pred_ltrb[k] = dis * stride;
                }

                float pb_cx = (j + 0.5f) * stride;
                float pb_cy = (i + 0.5f) * stride;

                BBoxRect _bbox{0};
                _bbox.xmin = pb_cx - pred_ltrb[0];
                _bbox.ymin = pb_cy - pred_ltrb[1];
                _bbox.xmax = pb_cx + pred_ltrb[2];
                _bbox.ymax = pb_cy + pred_ltrb[3];

                _bbox.label = label;
                _bbox.score = score;
                _bbox.area = 0;
                objects.push_back(_bbox);
            }
        }
    }
}
// copy from ncnn  === end



static inline int vector_2_priorbox(const std::vector<std::vector<std::vector<float>>> &src_anchors,
                                    std::vector<ncnn::Mat> &dst_priorboxes) {

    // 转化vector 到 ncnn::mat,  保持原来的纬度
    int num_levels = src_anchors.size();
    dst_priorboxes.clear();
    for (int i = 0; i < num_levels; ++i) {
        int h = src_anchors[i].size();
        ncnn::Mat _boxes;
        _boxes.create(4, h, sizeof(float));

        for (int j = 0; j < h; ++j) {
            float *data = _boxes.row(j);
            for (int k = 0; k < 4; ++k) {
                data[k] = src_anchors[i][j][k];
            }
        }
        dst_priorboxes.push_back(_boxes);
//        printf("%d,%d,%d,%d\n", _boxes.c, _boxes.h, _boxes.w, _boxes.d);
    }
    return 0;
}

// 离线anchor模式, 使用已经生成的anchor数据文件, 进行解码
static void generate_proposals2(const ncnn::Mat &cls_scores, const ncnn::Mat &bboxes_offset, int stride,
                                const ncnn::Mat &prior_boxes,
                                const float prob_threshold,
                                const int max_w, const int max_h,
                                const float scale_w, const float scale_h,
                                std::vector<BBoxRect> &objects) {

    // prior_boxes.shape: [N,4]
    // cls_pred.shape: [N, N_CLASS]
    // dis_preD.shape: [N, 4]
    objects.clear();
    const int num_class = cls_scores.w;
    const int num_prior = prior_boxes.h;

    const float *location_ptr = bboxes_offset;
    const float *priorbox_ptr = prior_boxes;
    const float mean[4] = {0., 0., 0., 0.};
    const float var[4] = {0.1, 0.1, 0.2, 0.2};

    for (int i = 0; i < num_prior; i++) {
        // find label with max score
        const float *scores = cls_scores.row(i);
        // find label with max score
        int label = -1;
        float score = -FLT_MAX;
        for (int k = 0; k < num_class; k++) {
            if (scores[k] > score) {
                label = k;
                score = scores[k];
            }
        }
        if (score < prob_threshold) continue;

        const float *delta = location_ptr + i * 4;
        const float *pb = priorbox_ptr + i * 4;
        float delta_cx = var[0] * delta[0] + mean[0];
        float delta_cy = var[1] * delta[1] + mean[1];
        float delta_w = var[2] * delta[2] + mean[2];
        float delta_h = var[3] * delta[3] + mean[3];

//        printf("xxx %.4f, %.4f, %.4f, %.4f,  %.4f\n", delta_cx,delta_cy,delta_w,delta_h, 1-score);

        float pb_cx = (pb[0] + pb[2]) * 0.5f;
        float pb_cy = (pb[1] + pb[3]) * 0.5f;
        float pb_w = pb[2] - pb[0];
        float pb_h = pb[3] - pb[1];

        delta_cx *= pb_w;
        delta_cy *= pb_h;

        float gx = pb_cx + delta_cx;
        float gy = pb_cy + delta_cy;
        float gw = pb_w * exp(delta_w);
        float gh = pb_h * exp(delta_h);


        BBoxRect _bbox{0};
        _bbox.xmin = MAX(0, gx - gw * 0.5f) / scale_w;
        _bbox.ymin = MAX(0, gy - gh * 0.5f) / scale_h;
        _bbox.xmax = MIN(max_w - 1, gx + gw * 0.5f) / scale_w;
        _bbox.ymax = MIN(max_h - 1, gy + gh * 0.5f) / scale_h;

        _bbox.label = label;
        _bbox.score = score;
        _bbox.area = 0;
        objects.push_back(_bbox);
    }
}

static inline float sigmoid(float x) {
    return static_cast<float>(1.f / (1.f + exp(-x)));
}

#endif //_NCNN_POSTPROCESS_H

针对mmdetection的anchor生成脚本如下:

import os
import os.path as osp

import numpy as np
from mmcv import Config
from mmdet.models import build_detector
import math
import argparse
import pickle


def save_cplus_h(multi_level_anchors, savefilepath):
    """
    multi_level_anchors.shape: [[box1,box2, ...], [], ...]
    """
    _template = '''
    
#ifndef _ANCHOR_H
#define _ANCHOR_H

#include "stdlib.h"
#include <vector>

/*
 * 目标检测的anchor框 头文件
 * */

static std::vector<std::vector<std::vector<float>>> ssd_anchor_all_levels = {
//        // stride 8
//        {
//                {-10., 0, -10., 20.},      // x1 y1 x2 y2
//                {-10., 0, -10., 20.},
//                {-10., 0, -10., 20.},
//        },
//
//        // stride 16
//        {
//                {-10., 0, -10., 20.},      // x1 y1 x2 y2
//                {-10., 0, -10., 20.},
//                {-10., 0, -10., 20.},
//        },
//
//        // stride 32
//        {
//                {-10., 0, -10., 20.},      // x1 y1 x2 y2
//                {-10., 0, -10., 20.},
//                {-10., 0, -10., 20.},
//        },
//
//        //...
        @here
};


#endif //_ANCHOR_H
    '''
    with open(savefilepath, 'w', encoding='utf-8') as f:
        m = ''
        num_levels = len(multi_level_anchors)
        for i, one_level_anchors in enumerate(multi_level_anchors):
            # [N,4]
            print(f'=============level {i} =============')
            print(one_level_anchors.shape)
            a = '{\n'
            for x1, y1, x2, y2 in one_level_anchors:
                line = '{' + f'{x1}, {y1}, {x2}, {y2}' + '},\n'
                a += line
            a += '},\n' if i<num_levels-1 else '}\n'
            m += a
        _template = _template.replace('@here', m)
        f.write(_template)
    return


def parse_args():
    parser = argparse.ArgumentParser(
        description='Convert MMDetection models to ONNX')
    parser.add_argument('config', help='test config file path')
    parser.add_argument('--output-file', type=str, default='anchor.npy')
    parser.add_argument(
        '--shape',
        type=int,
        nargs='+',
        default=[3, 224, 320],
        help='input image size (CHW)')
    args = parser.parse_args()
    return args


if __name__ == '__main__':
    args = parse_args()
    CONFIG = args.config

    assert args.output_file is not None
    INPUT_C, INPUT_H, INPUT_W = tuple(args.shape)

    cfg = Config.fromfile(CONFIG)
    model = build_detector(cfg.model)

    model.eval()
    assert hasattr(model, 'bbox_head')
    strides_tuple_list = model.bbox_head.anchor_generator.strides
    featmap_sizes = []
    c, h, w = INPUT_C, INPUT_H, INPUT_W
    for sh, sw in strides_tuple_list:
        featmap_sizes.append((math.ceil(h / sh), math.ceil(w / sw)))
        # featmap_sizes.append((math.ceil(h / sh + 0.5), math.ceil(w / sw + 0.5)))
        print([sh, sw], featmap_sizes)
    multi_level_anchors = model.bbox_head.anchor_generator.grid_anchors(featmap_sizes, 'cpu')

    total_anchors = np.concatenate(multi_level_anchors, axis=0)

    print(total_anchors.shape)
    print(total_anchors[:10])

    wh = np.array([[w, h] * 2])
    total_anchors_norm = total_anchors / wh

    ###################### 转bin #######################################################
    anchor_num = total_anchors.shape[0]
    total_anchors_bin_file = total_anchors_norm.reshape((1, 1, -1))
    # todo:  bbox_coder
    target_stds = cfg.model.bbox_head.bbox_coder.target_stds
    target_stds = np.array(target_stds * anchor_num).reshape((1, 1, -1))
    # [1,2,anchor_nums * 4]
    total_anchors_bin_file_res = np.concatenate((total_anchors_bin_file, target_stds), axis=1)
    _savefilepath_bin = f'{args.output_file[:-4]}.bin'
    total_anchors_bin_file_res.astype('float32').tofile(_savefilepath_bin)

    # .npy for python caffe
    _savefilepath_npy = f'{args.output_file[:-4]}.npy'
    np.save(_savefilepath_npy, total_anchors_norm)
    print(_savefilepath_bin)
    print(_savefilepath_npy)

    # 单独保存每个尺度的anchor
    # [[box1,box2, ...], [], ...]
    _savefilepath_pkl_per_levels = f'{args.output_file[:-4]}_per_level.pkl'
    f = open(_savefilepath_pkl_per_levels, 'wb')
    multi_level_anchors = [i.cpu().numpy() for i in multi_level_anchors]
    pickle.dump(multi_level_anchors, f)
    f.close()
    print(_savefilepath_pkl_per_levels)

    # 保存c++ 的头文件
    _savefilepath_h_per_levels = f'{args.output_file[:-4]}_per_level.h'
    save_cplus_h(multi_level_anchors, _savefilepath_h_per_levels)
    print(_savefilepath_h_per_levels)
    print('done.')

 

调用案例:

int NCNN_TEST_SIGMOID() {

    std::vector<ncnn::Mat> priorboxes;
    int ret = vector_2_priorbox(ssd_anchor_all_levels, priorboxes);
    assert(ret == 0);
    int num_levels = priorboxes.size();
    std::cout << "num_levels: " << num_levels << std::endl;

    // 网络参数设置:
    const int target_sizeW = 224;
    const int target_sizeH = 224;
    const int target_Channel = 1;
    const int NUM_CLASS = 1;  // 前景类为0,   sigmoid
    const float confidence_thresh = 0.7f;
    const float nms_threshold = 0.5f;
    const float means[4] = {0.f, 0.f, 0.f, 0.f};
    const float variances[4] = {0.1f, 0.1f, 0.2f, 0.2f};
    const float mean_vals[3] = {128.f, 128.f, 128.f};
    const float norm_vals[3] = {1 / 128.f, 1 / 128.f, 1 / 128.f};
    const std::string model_root = "../ncnn_models/repvgg";
    const std::string param = model_root + "/epoch_635.deploy.pth.sim-opt.param";
    const std::string bin = model_root + "/epoch_635.deploy.pth.sim-opt.bin";

    ncnn::Net _net;
    _net.opt.use_vulkan_compute = false;
    _net.opt.num_threads = 1;
    _net.opt.lightmode = false;

    ret = _net.load_param(param.c_str());
    assert(ret == 0);
    ret = _net.load_model(bin.c_str());
    assert(ret == 0);

    std::vector<const char *> inputs = _net.input_names();
    std::vector<const char *> ouputs = _net.output_names();
    for (int k = 0; k < inputs.size(); ++k) {
        printf("input name: %s\n", inputs[k]);
    }

//
//    for (int i = 0; i < _net.layers().size(); ++i) {
//        std::cout << 'layer: ' << _net.layers()[i]->name << std::endl;
//    }



    std::string root = "/media/xx";
    std::vector<cv::String> files;
    cv::glob(root + "/*.png", files, true);
    assert(files.size() > 0);
    for (auto &f: files) {

        std::string fname = getFilename(f);
        std::cout << "read file: " << fname << std::endl;


       cv::Mat img = cv::imread(f, 0);
        assert(!img.empty());

        cv::cvtColor(img, img, cv::COLOR_BGR2GRAY);

//        std::cout << img.channels() << std::endl;

        // preprocess
        const float scale_w = target_sizeW * 1.0 / img.cols;
        const float scale_h = target_sizeH * 1.0 / img.rows;
        ncnn::Mat in = ncnn::Mat::from_pixels_resize(img.data, ncnn::Mat::PIXEL_GRAY,
                                                     img.cols, img.rows,
                                                     target_sizeW, target_sizeH);
        in.substract_mean_normalize(mean_vals, norm_vals);

        ncnn::Extractor ex = _net.create_extractor();
        ex.set_num_threads(4);
        ex.input("input", in);

        auto t1 = GET_CURRENT_MISEC();
        // forward
        std::vector<BBoxRect> proposals;
        std::vector<std::vector<std::string>> output_names = {
                {"65", "66"}, // stride 16
                {"67", "68"}  // stride 32
        };
        assert(output_names.size() == priorboxes.size());
        for (int j = 0; j < priorboxes.size(); ++j) {

            printf("=======================level:%d========================\n", j);

            int level_idx = j;
            ncnn::Mat cls_pred;  // [N*M, H,W]
            ncnn::Mat dis_pred;  // [N*4, H,W]
            ret = ex.extract(output_names[level_idx][0].c_str(), cls_pred);
            assert(0 == ret);
            ret = ex.extract(output_names[level_idx][1].c_str(), dis_pred);
            assert(0 == ret);
            printf("cls_pred.shape: %d,%d,%d\n", cls_pred.c, cls_pred.h, cls_pred.w);
            printf("dis_pred.shape: %d,%d,%d\n", dis_pred.c, dis_pred.h, dis_pred.w);

            assert(cls_pred.dims == dis_pred.dims);
            assert(cls_pred.dims == 3);

            // permute --> reshape --> scores-sigmoid --> filter --> bbox_decode --> nms
            ncnn::Mat cls_pred_permute, dis_pred_permute;
            ret = ncnn_permute(cls_pred, cls_pred_permute);
            assert(0 == ret);
            ret = ncnn_permute(dis_pred, dis_pred_permute);
            assert(0 == ret);

            printf("cls_pred_permute.dims: %d\n", cls_pred_permute.dims);
            printf("cls_pred_permute.shape: %d,%d,%d\n", cls_pred_permute.c, cls_pred_permute.h, cls_pred_permute.w);
            printf("dis_pred_permute.dims: %d\n", dis_pred_permute.dims);
            printf("dis_pred_permute.shape: %d,%d,%d\n", dis_pred_permute.c, dis_pred_permute.h, dis_pred_permute.w);

            // [h,w,c] --> [-1, N_CLASS]
            // [h,w,c] --> [-1, 4]
            int _h1 = cls_pred_permute.w * cls_pred_permute.c * cls_pred_permute.h / NUM_CLASS;
            ncnn::Mat cls_pred_reshape = cls_pred_permute.reshape(NUM_CLASS, _h1);
            int _h2 = dis_pred_permute.w * dis_pred_permute.c * dis_pred_permute.h / 4;
            ncnn::Mat dis_pred_reshape = dis_pred_permute.reshape(4, _h2);
            printf("cls_pred_reshape.dims: %d\n", cls_pred_reshape.dims);
            printf("cls_pred_reshape.shape: %d,%d,%d\n", cls_pred_reshape.c, cls_pred_reshape.h, cls_pred_reshape.w);
            printf("dis_pred_reshape.dims: %d\n", dis_pred_reshape.dims);
            printf("dis_pred_reshape.shape: %d,%d,%d\n", dis_pred_reshape.c, dis_pred_reshape.h, dis_pred_reshape.w);

            //softmax or sigmoid
            assert(cls_pred_reshape.dims == 2);
            assert(dis_pred_reshape.dims == 2);
            ret = ncnn_sigmoid_inplace(cls_pred_reshape);
       //ret = ncnn_softmax_inplace(cls_pred_reshape, 1); 
assert(0 == ret); std::vector<BBoxRect> objects_stride_; assert(priorboxes[level_idx].h == cls_pred_reshape.h); generate_proposals2(cls_pred_reshape, dis_pred_reshape, level_idx, priorboxes[level_idx], confidence_thresh, target_sizeW, target_sizeH, scale_w, scale_h, objects_stride_); proposals.insert(proposals.end(), objects_stride_.begin(), objects_stride_.end()); } auto span = GET_CURRENT_MISEC() - t1; printf("cnn forward() elapsed: %.5f ms\n", span); if (proposals.empty()) { printf("warning: no detection.\n"); continue; } in.release(); ex.clear(); // postprocess // sort all proposals by score from highest to lowest qsort_descent_inplace(proposals, 0, proposals.size() - 1); // apply nms with nms_threshold std::vector<int> picked; nms_sorted_bboxes(proposals, picked, nms_threshold); int count = picked.size(); std::vector<BBoxRect> objects; objects.resize(count); for (int i = 0; i < count; i++) { objects[i] = proposals[picked[i]]; } // show bboxes if (img.channels() == 1) { cv::cvtColor(img, img, cv::COLOR_GRAY2BGR); } for (int i = 0; i < objects.size(); ++i) { float x0 = objects[i].xmin; float y0 = objects[i].ymin; float x1 = objects[i].xmax; float y1 = objects[i].ymax; printf("bbox %d(x1,y1,x2,y2,label,score): [%.2f,%.2f,%.2f,%.2f, %d, %.2f]\n", i, x0, y0, x1, y1, objects[i].label, objects[i].score); cv::rectangle(img, cv::Point2f(x0, y0), cv::Point2f(x1, y1), cv::Scalar(0, 0, 255), 2); char tmp[200]; sprintf(tmp, "%d(%.2f)", objects[i].label, objects[i].score); cv::putText(img, tmp, cv::Point2f(x0, y0), cv::FONT_HERSHEY_COMPLEX, 0.5, cv::Scalar(0, 0, 255)); } cv::imshow("1", img); cv::waitKey(0); objects.clear(); img.release(); } //release _net.clear(); priorboxes.clear(); return 0; }

 

 

posted @ 2022-10-18 15:12  dangxusheng  阅读(304)  评论(0编辑  收藏  举报