人脸对齐过程实现 c++和python
c++ 实现版本:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 | 1 人脸检测 1.1 使用mtcnn-ncnn进行人脸检测,会输出face box和landmark5 face box: [x1,y1,x2,y2] landmark5: [left_eye,right_eye, nose, month_left, month_right] 2 图像变换(使用Egien矩阵库) 2.1 下载Egien 2.2 创建一个项目, 引用Egien, 2.3 使用SVD分解, 计算变换矩阵, 2.4 进行图像的仿射变换 ================================================= 代码如下: #pragma once #include<Dense> #include"opencv_base.h" using namespace std; using namespace Eigen; /* 使用五点人脸对齐 left_eye, right_eye, nose, left_month, right_month */ static Mat face_align_bypoint5(Mat src_frame, vector<Point2d> landmark5, vector<Point2d> box) { MatrixXf src_landmark_mtx(5, 2); int i = 0; for ( size_t r = 0; r < landmark5.size(); r++) { src_landmark_mtx(r, 0) = landmark5.at(r).x; src_landmark_mtx(r, 1) = landmark5.at(r).y; i++; } Matrix< float , 5, 2> dst_landmark_mtx; dst_landmark_mtx << 30.2946, 51.6963, 65.5318, 51.6963, 48.0252, 71.7366, 33.5493, 92.3655, 62.7299, 92.3655; int rows = src_landmark_mtx.rows(); int cols = src_landmark_mtx.cols(); MatrixXf mean1 = src_landmark_mtx.colwise().mean(); // [1,2] MatrixXf mean2 = dst_landmark_mtx.colwise().mean(); // [1,2] float col_mean_1 = mean1(0, 0); // 列的均值 float col_mean_2 = mean2(0, 0); //cout << src_landmark_mtx << endl; //cout << dst_landmark_mtx << endl; // std = sqrt(mean(abs(x - x.mean())**2)) Matrix< float , 5, 2> m1, m2; for ( size_t r = 0; r < rows; r++) { for ( size_t c = 0; c < cols; c++) { src_landmark_mtx(r, c) -= mean1(0, c); dst_landmark_mtx(r, c) -= mean2(0, c); auto abs_v1 = std:: abs (src_landmark_mtx(r, c)); auto abs_v2 = std:: abs (dst_landmark_mtx(r, c)); m1(r, c) = pow (abs_v1, 2); m2(r, c) = pow (abs_v2, 2); } } float std1 = sqrt (m1.mean()); float std2 = sqrt (m2.mean()); src_landmark_mtx /= std1; dst_landmark_mtx /= std2; //printf_s(" ============= std norm =============\n"); //cout << src_landmark_mtx << endl; //cout << dst_landmark_mtx << endl; MatrixXf m = src_landmark_mtx.transpose() * dst_landmark_mtx; // [2,2] JacobiSVD<MatrixXf> svd(m, ComputeThinU | ComputeThinV); MatrixXf VT = svd.matrixV().transpose(); MatrixXf U = svd.matrixU(); MatrixXf A = svd.singularValues(); MatrixXf R = (U*VT).transpose(); // [2,2] //printf_s(" ============= svd =============\n"); //cout << VT << endl; //cout << U << endl; //cout << A << endl; //cout << R << endl; MatrixXf M(3, 3); M.row(2) << 0., 0., 1.; MatrixXf t1 = (std1 / std2)*R; // [2,2] MatrixXf t2 = mean2.transpose() - (std1 / std2)*R*mean1.transpose(); // [2,1] M.row(0) << t1(0, 0), t1(0, 1), t2(0, 0); M.row(1) << t1(1, 0), t1(1, 1), t2(1, 0); //printf_s(" ============= transformer =============\n"); //cout << M << endl; //printf_s(" ============= face transformer =============\n"); Mat cv_transformMat = (Mat_< double >(2, 3) << \ M(0, 0), M(0, 1), M(0, 2), \ M(1, 0), M(1, 1), M(1, 2)); Mat align_img = Mat::zeros(src_frame.rows * 3, src_frame.cols * 3, src_frame.type()); src_frame.copyTo(align_img(Rect(100, 100, src_frame.cols, src_frame.rows))); for ( size_t k = 0; k < box.size(); k++) { box.at(k).x += 100; box.at(k).y += 100; } //rectangle(align_img, // Rect(box[0].x, box[0].y, // box[3].x - box[0].x, // box[3].y - box[0].y), // Scalar(0, 255, 0), 1, 1); for ( size_t k = 0; k < landmark5.size(); k++) { landmark5.at(k).x += 100; landmark5.at(k).y += 100; //circle(align_img, landmark5.at(k), 2, Scalar(0, 255, 0), 1); } //imshow("align", align_img); warpAffine(align_img, align_img, cv_transformMat, align_img.size()); //printf_s(" ============= point transformer =============\n"); Rect roi(0, 0, 0, 0); for ( size_t r = 0; r < box.size(); r++) { auto x = box.at(r).x, y = box.at(r).y; box[r].x = x * M(0, 0) + y * M(0, 1) + M(0, 2); box[r].y = x * M(1, 0) + y * M(1, 1) + M(1, 2); } for ( size_t r = 0; r < landmark5.size(); r++) { auto x = landmark5.at(r).x, y = landmark5.at(r).y; landmark5[r].x = x * M(0, 0) + y * M(0, 1) + M(0, 2); landmark5[r].y = x * M(1, 0) + y * M(1, 1) + M(1, 2); } // 由于box的点对齐后会出现 脸不全的情况,需要使用对齐后的关键点来矫正box auto dis_left_eye_right_eye = landmark5[1].x - landmark5[0].x; auto dis_left_month_left_eye = landmark5[landmark5.size() - 2].y - landmark5[0].y; box[0].x = min(box[0].x, landmark5[0].x - dis_left_eye_right_eye / 2); // left top X; box[0].y = min(box[0].y, landmark5[0].y - dis_left_month_left_eye / 1.1); // left top Y; box[box.size() - 1].x = max(box[box.size() - 1].x, landmark5[1].x + dis_left_eye_right_eye / 2); // right bottom X; box[box.size() - 1].y = max(box[box.size() - 1].y, landmark5[landmark5.size() - 1].y + dis_left_month_left_eye / 1.1); // right bottom y; roi.x = max(0, int (box[0].x)); roi.y = max(0, int (box[0].y)); roi.width = min( int (box.at(box.size() - 1).x - roi.x) + 10, align_img.cols - roi.x); roi.height = min( int (box.at(box.size() - 1).y - roi.y) + 10, align_img.rows - roi.y); Mat align_face = align_img(roi); //// draw //rectangle(align_img, roi, Scalar(0, 0, 255), 1, 1); //for (size_t k = 0; k < landmark5.size(); k++) //{ // circle(align_img, landmark5.at(k), 2, Scalar(0, 0, 255), 1); //} //resize(align_face, align_face, Size(300, 350)); //imshow("src", src_frame); //imshow("align2", align_img); //imshow("align3", align_face); //waitKey(0); return align_face; } static Mat face_align_bypoint72(Mat src_frame, vector<Point2d> landmark72, vector<Point2d> box) { int rows = landmark72.size(); int cols = 2; MatrixXf src_landmark_mtx(rows, 2); int i = 0; for ( size_t r = 0; r < landmark72.size(); r++) { src_landmark_mtx(r, 0) = landmark72.at(r).x; src_landmark_mtx(r, 1) = landmark72.at(r).y; i++; } MatrixXf dst_landmark_mtx(rows, 2); dst_landmark_mtx << 32.00, 210.00, 42.00, 281.00, 54.00, 353.00, 73.00, 424.00, 118.00, 497.00, 189.00, 558.00, 265.00, 579.00, 335.00, 553.00, 400.00, 494.00, 444.00, 425.00, 465.00, 353.00, 477.00, 282.00, 484.00, 211.00, 107.00, 256.00, 132.00, 241.00, 158.00, 238.00, 185.00, 245.00, 205.00, 267.00, 181.00, 274.00, 154.00, 275.00, 128.00, 268.00, 160.00, 254.00, 73.000, 212.00, 107.00, 190.00, 148.00, 194.00, 182.00, 207.00, 214.00, 231.00, 179.00, 226.00, 143.00, 219.00, 107.00, 213.00, 312.00, 266.00, 334.00, 243.00, 361.00, 235.00, 387.00, 239.00, 412.00, 254.00, 392.00, 268.00, 364.00, 275.00, 336.00, 273.00, 361.00, 253.00, 298.00, 230.00, 334.00, 207.00, 369.00, 196.00, 411.00, 192.00, 447.00, 213.00, 412.00, 215.00, 374.00, 221.00, 337.00, 228.00, 229.00, 270.00, 224.00, 314.00, 220.00, 357.00, 204.00, 402.00, 225.00, 409.00, 295.00, 410.00, 320.00, 404.00, 303.00, 359.00, 296.00, 315.00, 287.00, 270.00, 260.00, 392.00, 188.00, 465.00, 227.00, 464.00, 264.00, 467.00, 302.00, 461.00, 340.00, 466.00, 305.00, 487.00, 264.00, 492.00, 223.00, 485.00, 226.00, 475.00, 263.00, 481.00, 302.00, 476.00, 300.00, 467.00, 263.00, 467.00, 229.00, 465.00; MatrixXf mean1 = src_landmark_mtx.colwise().mean(); // [1,2] MatrixXf mean2 = dst_landmark_mtx.colwise().mean(); // [1,2] float col_mean_1 = mean1(0, 0); // 列的均值 float col_mean_2 = mean2(0, 0); cout << src_landmark_mtx << endl; cout << dst_landmark_mtx << endl; // std = sqrt(mean(abs(x - x.mean())**2)) MatrixXf m1(rows, 2), m2(rows, 2); for ( size_t r = 0; r < rows; r++) { for ( size_t c = 0; c < cols; c++) { src_landmark_mtx(r, c) -= mean1(0, c); dst_landmark_mtx(r, c) -= mean2(0, c); auto abs_v1 = std:: abs (src_landmark_mtx(r, c)); auto abs_v2 = std:: abs (dst_landmark_mtx(r, c)); m1(r, c) = pow (abs_v1, 2); m2(r, c) = pow (abs_v2, 2); } } float std1 = sqrt (m1.mean()); float std2 = sqrt (m2.mean()); src_landmark_mtx /= std1; dst_landmark_mtx /= std2; printf_s( " ============= std norm =============\n" ); cout << src_landmark_mtx << endl; cout << dst_landmark_mtx << endl; MatrixXf m = src_landmark_mtx.transpose() * dst_landmark_mtx; // [2,2] JacobiSVD<MatrixXf> svd(m, ComputeThinU | ComputeThinV); MatrixXf VT = svd.matrixV().transpose(); MatrixXf U = svd.matrixU(); MatrixXf A = svd.singularValues(); MatrixXf R = (U*VT).transpose(); // [2,2] printf_s( " ============= svd =============\n" ); cout << VT << endl; cout << U << endl; cout << A << endl; cout << R << endl; MatrixXf M(3, 3); M.row(2) << 0., 0., 1.; MatrixXf t1 = (std1 / std2)*R; // [2,2] MatrixXf t2 = mean2.transpose() - (std1 / std2)*R*mean1.transpose(); // [2,1] M.row(0) << t1(0, 0), t1(0, 1), t2(0, 0); M.row(1) << t1(1, 0), t1(1, 1), t2(1, 0); printf_s( " ============= transformer =============\n" ); cout << M << endl; printf_s( " ============= face transformer =============\n" ); Mat cv_transformMat = (Mat_< double >(2, 3) << \ M(0, 0), M(0, 1), M(0, 2), \ M(1, 0), M(1, 1), M(1, 2)); Mat align_img = Mat::zeros(src_frame.rows * 3, src_frame.cols * 3, CV_8UC3); src_frame.copyTo(align_img(Rect(100, 100, src_frame.cols, src_frame.rows))); for ( size_t k = 0; k < box.size(); k++) { box.at(k).x += 100; box.at(k).y += 100; } //rectangle(align_img, Rect(box[0].x, box[0].y, box[3].x - box[0].x, box[3].y - box[0].y), // Scalar(0, 255, 0), 1, 1); for ( size_t k = 0; k < landmark72.size(); k++) { landmark72.at(k).x += 100; landmark72.at(k).y += 100; //circle(align_img, landmark72.at(k), 2, Scalar(0, 255, 0), 1); } //imshow("align", align_img); warpAffine(align_img, align_img, cv_transformMat, align_img.size()); printf_s( " ============= point transformer =============\n" ); Rect roi(0, 0, 0, 0); for ( size_t r = 0; r < box.size(); r++) { auto x = box.at(r).x, y = box.at(r).y; box[r].x = x * M(0, 0) + y * M(0, 1) + M(0, 2); box[r].y = x * M(1, 0) + y * M(1, 1) + M(1, 2); } for ( size_t r = 0; r < landmark72.size(); r++) { auto x = landmark72.at(r).x, y = landmark72.at(r).y; landmark72[r].x = x * M(0, 0) + y * M(0, 1) + M(0, 2); landmark72[r].y = x * M(1, 0) + y * M(1, 1) + M(1, 2); } // 由于box的点对齐后会出现 脸不全的情况,需要使用对齐后的关键点来矫正box //auto dis_left_eye_right_eye = landmark72[38].x - landmark72[21].x; //auto dis_left_month_left_eye = landmark72[58].y - landmark72[21].y; //box[0].x = min(box[0].x, landmark72[21].x - dis_left_eye_right_eye / 2); // left top X; //box[0].y = min(box[0].y, landmark72[21].y - dis_left_month_left_eye / 1.1); // left top Y; //box[box.size() - 1].x = max(box[box.size() - 1].x, landmark72[38].x + dis_left_eye_right_eye / 2); // right bottom X; //box[box.size() - 1].y = max(box[box.size() - 1].y, landmark72[58].y + dis_left_month_left_eye / 1.1); // right bottom y; //roi.x = max(0, int(box[0].x)); //roi.y = max(0, int(box[0].y)); //roi.width = min(int(box.at(box.size() - 1).x - roi.x) + 10, align_img.cols - roi.x); //roi.height = min(int(box.at(box.size() - 1).y - roi.y) + 10, align_img.rows - roi.y); // 使用脸部外围的极值点来矫正 double min_x = landmark72[0].x, min_y = landmark72[41].y; double max_x = landmark72[12].x, max_y = landmark72[6].y; box[0].x = min(box[0].x, min_x); box[0].y = min(box[0].y, min_y); roi.x = max(0, int (box[0].x)); roi.y = max(0, int (box[0].y)); roi.width = min( int (max_x - roi.x) + 5, align_img.cols - roi.x); roi.height = min( int (max_y - roi.y) + 5, align_img.rows - roi.y); if (roi.width <= 0 || roi.height <= 0) { return align_img; } Mat align_face = align_img(roi); //// draw box & keypoints //rectangle(align_img, roi, Scalar(0, 0, 255), 1, 1); //for (size_t k = 0; k < landmark72.size(); k++) //{ // circle(align_img, landmark72.at(k), 2, Scalar(0, 0, 255), 1); //} //resize(align_face, align_face, Size(300, 350)); //imshow("src", src_frame); //imshow("align2", align_img); //imshow("align3", align_face); //waitKey(0); return align_face; } ================================================= 3 输出 3.1 输出的图像就是垂直的人脸图像 |
Python 实现过程:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 | 1 人脸检测 1.1 使用mtcnn - tensorflow进行人脸检测,会输出face box和landmark5 face box: [x1,y1,x2,y2] landmark5: [left_eye,right_eye, nose, month_left, month_right] 2 图像变换(使用numpy矩阵库) 2.1 使用SVD分解, 计算变换矩阵, 2.2 进行图像的仿射变换 = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = # 计算旋转矩阵 def transformation_from_points(points1, points2): points1 = points1.astype(np.float64) points2 = points2.astype(np.float64) c1 = np.mean(points1, axis = 0 ) c2 = np.mean(points2, axis = 0 ) points1 - = c1 points2 - = c2 s1 = np.std(points1) s2 = np.std(points2) points1 / = s1 points2 / = s2 U, S, Vt = np.linalg.svd(points1.T * points2) R = (U * Vt).T M = np.vstack([ np.hstack(((s2 / s1) * R, c2.T - (s2 / s1) * R * c1.T)), np.asmatrix([ 0. , 0. , 1. ])]) return M # 关键点对齐 def landmark_alignment(src_landmark, M): M_matrix = np.asmatrix(M) assert M_matrix.shape = = ( 3 , 3 ) rows, cols = src_landmark.shape src_landmark2 = src_landmark.copy() for i in range (rows): x, y = src_landmark[i, 0 ], src_landmark[i, 1 ] x1 = x * M_matrix[ 0 , 0 ] + y * M_matrix[ 0 , 1 ] + M_matrix[ 0 , 2 ] y1 = x * M_matrix[ 1 , 0 ] + y * M_matrix[ 1 , 1 ] + M_matrix[ 1 , 2 ] src_landmark2[i] = [x1, y1] src_landmark2 = src_landmark2.astype(np. int ) return src_landmark2 # 人脸对齐 def face_alignment(src_landmark5, image_numpy): h, w, c = image_numpy.shape # 5点对齐后的基准点 dst_landmark5 = np.asmatrix([[ 30.2946 , 51.6963 ], # left eye [ 65.5318 , 51.6963 ], # right eye [ 48.0252 , 71.7366 ], # nose [ 33.5493 , 92.3655 ], # left month [ 62.7299 , 92.3655 ]]) # right month # 68点对齐后的基准点 dst_landmark68 = np.asmatrix([[ 282 , 156 ], [ 278 , 176 ], [ 277 , 198 ], [ 276 , 219 ], [ 279 , 241 ], [ 287 , 262 ], [ 299 , 280 ], [ 315 , 293 ], [ 333 , 300 ], [ 352 , 300 ], [ 372 , 293 ], [ 391 , 282 ], [ 406 , 270 ], [ 418 , 253 ], [ 426 , 236 ], [ 434 , 217 ], [ 439 , 197 ], [ 301 , 138 ], [ 313 , 128 ], [ 328 , 127 ], [ 343 , 130 ], [ 356 , 138 ], [ 384 , 144 ], [ 400 , 142 ], [ 417 , 145 ], [ 431 , 156 ], [ 437 , 171 ], [ 365 , 160 ], [ 362 , 174 ], [ 359 , 188 ], [ 357 , 202 ], [ 337 , 211 ], [ 344 , 215 ], [ 352 , 219 ], [ 360 , 219 ], [ 368 , 218 ], [ 312 , 152 ], [ 322 , 147 ], [ 332 , 149 ], [ 340 , 159 ], [ 330 , 159 ], [ 320 , 157 ], [ 385 , 169 ], [ 396 , 164 ], [ 407 , 167 ], [ 414 , 176 ], [ 405 , 177 ], [ 394 , 174 ], [ 317 , 242 ], [ 329 , 237 ], [ 341 , 235 ], [ 347 , 238 ], [ 356 , 237 ], [ 364 , 243 ], [ 371 , 253 ], [ 361 , 258 ], [ 351 , 259 ], [ 343 , 259 ], [ 335 , 257 ], [ 326 , 251 ], [ 322 , 242 ], [ 339 , 243 ], [ 346 , 245 ], [ 354 , 245 ], [ 366 , 251 ], [ 353 , 247 ], [ 345 , 247 ], [ 338 , 245 ]]) # 计算旋转矩阵 M = transformation_from_points(src_landmark5, dst_landmark5) # 旋转图像 align_image = cv2.warpAffine(image_numpy, M[: 2 ], (w, h)) # M = cv2.getPerspectiveTransform(np.asarray(src_landmark5, np.float32), # np.asarray(dst_landmark5, np.float32)) # align_image = cv2.warpPerspective(image_numpy, M, (w, h)) return align_image, M = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = 3 输出 3.1 输出的图像就是垂直的人脸图像 |
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
· 没有源码,如何修改代码逻辑?
· 全程不用写代码,我用AI程序员写了一个飞机大战
· DeepSeek 开源周回顾「GitHub 热点速览」
· 记一次.NET内存居高不下排查解决与启示
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· .NET10 - 预览版1新功能体验(一)