人脸对齐过程实现 c++和python

c++ 实现版本:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
1 人脸检测
     1.1 使用mtcnn-ncnn进行人脸检测,会输出face box和landmark5
         face box: [x1,y1,x2,y2]
         landmark5: [left_eye,right_eye, nose, month_left, month_right]
 2 图像变换(使用Egien矩阵库)
     2.1 下载Egien
     2.2 创建一个项目, 引用Egien,
     2.3 使用SVD分解, 计算变换矩阵,
     2.4 进行图像的仿射变换
     =================================================
     代码如下:
     #pragma once
     #include<Dense>
     #include"opencv_base.h"
 
     using namespace std;
     using namespace Eigen;
 
     /*
     使用五点人脸对齐
     left_eye, right_eye, nose, left_month, right_month
     */
     static  Mat face_align_bypoint5(Mat src_frame, vector<Point2d> landmark5, vector<Point2d> box) {
         MatrixXf src_landmark_mtx(5, 2);
         int i = 0;
         for (size_t r = 0; r < landmark5.size(); r++)
         {
             src_landmark_mtx(r, 0) = landmark5.at(r).x;
             src_landmark_mtx(r, 1) = landmark5.at(r).y;
             i++;
         }
 
         Matrix<float, 5, 2> dst_landmark_mtx;
         dst_landmark_mtx << 30.2946, 51.6963,
             65.5318, 51.6963,
             48.0252, 71.7366,
             33.5493, 92.3655,
             62.7299, 92.3655;
 
         int rows = src_landmark_mtx.rows();
         int cols = src_landmark_mtx.cols();
         MatrixXf mean1 = src_landmark_mtx.colwise().mean(); // [1,2]
         MatrixXf mean2 = dst_landmark_mtx.colwise().mean(); // [1,2]
         float col_mean_1 = mean1(0, 0);  // 列的均值
         float col_mean_2 = mean2(0, 0);
 
         //cout << src_landmark_mtx << endl;
         //cout << dst_landmark_mtx << endl;
 
         // std = sqrt(mean(abs(x - x.mean())**2))
         Matrix<float, 5, 2> m1, m2;
         for (size_t r = 0; r < rows; r++)
         {
             for (size_t c = 0; c < cols; c++)
             {
                 src_landmark_mtx(r, c) -= mean1(0, c);
                 dst_landmark_mtx(r, c) -= mean2(0, c);
 
                 auto abs_v1 = std::abs(src_landmark_mtx(r, c));
                 auto abs_v2 = std::abs(dst_landmark_mtx(r, c));
                 m1(r, c) = pow(abs_v1, 2);
                 m2(r, c) = pow(abs_v2, 2);
             }
         }
 
         float std1 = sqrt(m1.mean());
         float std2 = sqrt(m2.mean());
         src_landmark_mtx /= std1;
         dst_landmark_mtx /= std2;
 
         //printf_s(" ============= std norm =============\n");
         //cout << src_landmark_mtx << endl;
         //cout << dst_landmark_mtx << endl;
 
         MatrixXf m = src_landmark_mtx.transpose() * dst_landmark_mtx;  // [2,2]
         JacobiSVD<MatrixXf> svd(m, ComputeThinU | ComputeThinV);
         MatrixXf VT = svd.matrixV().transpose();
         MatrixXf U = svd.matrixU();
         MatrixXf  A = svd.singularValues();
         MatrixXf R = (U*VT).transpose();  // [2,2]
 
         //printf_s(" ============= svd =============\n");
         //cout << VT << endl;
         //cout << U << endl;
         //cout << A << endl;
         //cout << R << endl;
 
         MatrixXf M(3, 3);
         M.row(2) << 0., 0., 1.;
         MatrixXf t1 = (std1 / std2)*R;  // [2,2]
         MatrixXf t2 = mean2.transpose() - (std1 / std2)*R*mean1.transpose();  // [2,1]
         M.row(0) << t1(0, 0), t1(0, 1), t2(0, 0);
         M.row(1) << t1(1, 0), t1(1, 1), t2(1, 0);
 
         //printf_s(" ============= transformer =============\n");
         //cout << M << endl;
 
         //printf_s(" ============= face transformer =============\n");
         Mat cv_transformMat = (Mat_<double>(2, 3) << \
             M(0, 0), M(0, 1), M(0, 2), \
             M(1, 0), M(1, 1), M(1, 2));
         Mat align_img = Mat::zeros(src_frame.rows * 3, src_frame.cols * 3, src_frame.type());
         src_frame.copyTo(align_img(Rect(100, 100, src_frame.cols, src_frame.rows)));
         for (size_t k = 0; k < box.size(); k++)
         {
             box.at(k).x += 100;
             box.at(k).y += 100;
         }
         //rectangle(align_img,
         //  Rect(box[0].x, box[0].y,
         //  box[3].x - box[0].x,
         //  box[3].y - box[0].y),
         //  Scalar(0, 255, 0), 1, 1);
         for (size_t k = 0; k < landmark5.size(); k++)
         {
             landmark5.at(k).x += 100;
             landmark5.at(k).y += 100;
             //circle(align_img, landmark5.at(k), 2, Scalar(0, 255, 0), 1);
         }
 
         //imshow("align", align_img);
         warpAffine(align_img, align_img, cv_transformMat, align_img.size());
 
         //printf_s(" ============= point transformer =============\n");
         Rect roi(0, 0, 0, 0);
         for (size_t r = 0; r < box.size(); r++)
         {
             auto x = box.at(r).x, y = box.at(r).y;
             box[r].x = x * M(0, 0) + y * M(0, 1) + M(0, 2);
             box[r].y = x * M(1, 0) + y * M(1, 1) + M(1, 2);
         }
         for (size_t r = 0; r < landmark5.size(); r++)
         {
             auto x = landmark5.at(r).x, y = landmark5.at(r).y;
             landmark5[r].x = x * M(0, 0) + y * M(0, 1) + M(0, 2);
             landmark5[r].y = x * M(1, 0) + y * M(1, 1) + M(1, 2);
         }
 
         // 由于box的点对齐后会出现 脸不全的情况,需要使用对齐后的关键点来矫正box
         auto dis_left_eye_right_eye = landmark5[1].x - landmark5[0].x;
         auto dis_left_month_left_eye = landmark5[landmark5.size() - 2].y - landmark5[0].y;
         box[0].x = min(box[0].x, landmark5[0].x - dis_left_eye_right_eye / 2);      // left top X;
         box[0].y = min(box[0].y, landmark5[0].y - dis_left_month_left_eye / 1.1);       // left top Y;
         box[box.size() - 1].x = max(box[box.size() - 1].x, landmark5[1].x + dis_left_eye_right_eye / 2);        // right bottom X;
         box[box.size() - 1].y = max(box[box.size() - 1].y, landmark5[landmark5.size() - 1].y + dis_left_month_left_eye / 1.1);      // right bottom y;
 
 
         roi.x = max(0, int(box[0].x));
         roi.y = max(0, int(box[0].y));
         roi.width = min(int(box.at(box.size() - 1).x - roi.x) + 10, align_img.cols - roi.x);
         roi.height = min(int(box.at(box.size() - 1).y - roi.y) + 10, align_img.rows - roi.y);
         Mat align_face = align_img(roi);
 
         //// draw
         //rectangle(align_img, roi, Scalar(0, 0, 255), 1, 1);
         //for (size_t k = 0; k < landmark5.size(); k++)
         //{
         //  circle(align_img, landmark5.at(k), 2, Scalar(0, 0, 255), 1);
         //}
 
         //resize(align_face, align_face, Size(300, 350));
 
         //imshow("src", src_frame);
         //imshow("align2", align_img);
         //imshow("align3", align_face);
         //waitKey(0);
 
         return align_face;
     }
 
     static Mat face_align_bypoint72(Mat src_frame, vector<Point2d> landmark72, vector<Point2d> box) {
         int rows = landmark72.size();
         int cols = 2;
         MatrixXf src_landmark_mtx(rows, 2);
         int i = 0;
         for (size_t r = 0; r < landmark72.size(); r++)
         {
             src_landmark_mtx(r, 0) = landmark72.at(r).x;
             src_landmark_mtx(r, 1) = landmark72.at(r).y;
             i++;
         }
         MatrixXf dst_landmark_mtx(rows, 2);
         dst_landmark_mtx << 32.00, 210.00,
             42.00, 281.00,
             54.00, 353.00,
             73.00, 424.00,
             118.00, 497.00,
             189.00, 558.00,
             265.00, 579.00,
             335.00, 553.00,
             400.00, 494.00,
             444.00, 425.00,
             465.00, 353.00,
             477.00, 282.00,
             484.00, 211.00,
             107.00, 256.00,
             132.00, 241.00,
             158.00, 238.00,
             185.00, 245.00,
             205.00, 267.00,
             181.00, 274.00,
             154.00, 275.00,
             128.00, 268.00,
             160.00, 254.00,
             73.000, 212.00,
             107.00, 190.00,
             148.00, 194.00,
             182.00, 207.00,
             214.00, 231.00,
             179.00, 226.00,
             143.00, 219.00,
             107.00, 213.00,
             312.00, 266.00,
             334.00, 243.00,
             361.00, 235.00,
             387.00, 239.00,
             412.00, 254.00,
             392.00, 268.00,
             364.00, 275.00,
             336.00, 273.00,
             361.00, 253.00,
             298.00, 230.00,
             334.00, 207.00,
             369.00, 196.00,
             411.00, 192.00,
             447.00, 213.00,
             412.00, 215.00,
             374.00, 221.00,
             337.00, 228.00,
             229.00, 270.00,
             224.00, 314.00,
             220.00, 357.00,
             204.00, 402.00,
             225.00, 409.00,
             295.00, 410.00,
             320.00, 404.00,
             303.00, 359.00,
             296.00, 315.00,
             287.00, 270.00,
             260.00, 392.00,
             188.00, 465.00,
             227.00, 464.00,
             264.00, 467.00,
             302.00, 461.00,
             340.00, 466.00,
             305.00, 487.00,
             264.00, 492.00,
             223.00, 485.00,
             226.00, 475.00,
             263.00, 481.00,
             302.00, 476.00,
             300.00, 467.00,
             263.00, 467.00,
             229.00, 465.00;
 
         MatrixXf mean1 = src_landmark_mtx.colwise().mean(); // [1,2]
         MatrixXf mean2 = dst_landmark_mtx.colwise().mean(); // [1,2]
         float col_mean_1 = mean1(0, 0);  // 列的均值
         float col_mean_2 = mean2(0, 0);
 
         cout << src_landmark_mtx << endl;
         cout << dst_landmark_mtx << endl;
 
         // std = sqrt(mean(abs(x - x.mean())**2))
         MatrixXf m1(rows, 2), m2(rows, 2);
         for (size_t r = 0; r < rows; r++)
         {
             for (size_t c = 0; c < cols; c++)
             {
                 src_landmark_mtx(r, c) -= mean1(0, c);
                 dst_landmark_mtx(r, c) -= mean2(0, c);
 
                 auto abs_v1 = std::abs(src_landmark_mtx(r, c));
                 auto abs_v2 = std::abs(dst_landmark_mtx(r, c));
                 m1(r, c) = pow(abs_v1, 2);
                 m2(r, c) = pow(abs_v2, 2);
             }
         }
 
         float std1 = sqrt(m1.mean());
         float std2 = sqrt(m2.mean());
         src_landmark_mtx /= std1;
         dst_landmark_mtx /= std2;
 
         printf_s(" ============= std norm =============\n");
 
         cout << src_landmark_mtx << endl;
         cout << dst_landmark_mtx << endl;
 
         MatrixXf m = src_landmark_mtx.transpose() * dst_landmark_mtx;  // [2,2]
         JacobiSVD<MatrixXf> svd(m, ComputeThinU | ComputeThinV);
         MatrixXf VT = svd.matrixV().transpose();
         MatrixXf U = svd.matrixU();
         MatrixXf  A = svd.singularValues();
         MatrixXf R = (U*VT).transpose();  // [2,2]
 
         printf_s(" ============= svd =============\n");
         cout << VT << endl;
         cout << U << endl;
         cout << A << endl;
         cout << R << endl;
 
         MatrixXf M(3, 3);
         M.row(2) << 0., 0., 1.;
         MatrixXf t1 = (std1 / std2)*R;  // [2,2]
         MatrixXf t2 = mean2.transpose() - (std1 / std2)*R*mean1.transpose();  // [2,1]
         M.row(0) << t1(0, 0), t1(0, 1), t2(0, 0);
         M.row(1) << t1(1, 0), t1(1, 1), t2(1, 0);
 
         printf_s(" ============= transformer =============\n");
         cout << M << endl;
 
 
         printf_s(" ============= face transformer =============\n");
         Mat cv_transformMat = (Mat_<double>(2, 3) << \
             M(0, 0), M(0, 1), M(0, 2), \
             M(1, 0), M(1, 1), M(1, 2));
         Mat align_img = Mat::zeros(src_frame.rows * 3, src_frame.cols * 3, CV_8UC3);
         src_frame.copyTo(align_img(Rect(100, 100, src_frame.cols, src_frame.rows)));
         for (size_t k = 0; k < box.size(); k++)
         {
             box.at(k).x += 100;
             box.at(k).y += 100;
         }
         //rectangle(align_img, Rect(box[0].x, box[0].y, box[3].x - box[0].x, box[3].y - box[0].y),
         //  Scalar(0, 255, 0), 1, 1);
         for (size_t k = 0; k < landmark72.size(); k++)
         {
             landmark72.at(k).x += 100;
             landmark72.at(k).y += 100;
             //circle(align_img, landmark72.at(k), 2, Scalar(0, 255, 0), 1);
         }
 
         //imshow("align", align_img);
         warpAffine(align_img, align_img, cv_transformMat, align_img.size());
 
         printf_s(" ============= point transformer =============\n");
         Rect roi(0, 0, 0, 0);
         for (size_t r = 0; r < box.size(); r++)
         {
             auto x = box.at(r).x, y = box.at(r).y;
             box[r].x = x * M(0, 0) + y * M(0, 1) + M(0, 2);
             box[r].y = x * M(1, 0) + y * M(1, 1) + M(1, 2);
         }
         for (size_t r = 0; r < landmark72.size(); r++)
         {
             auto x = landmark72.at(r).x, y = landmark72.at(r).y;
             landmark72[r].x = x * M(0, 0) + y * M(0, 1) + M(0, 2);
             landmark72[r].y = x * M(1, 0) + y * M(1, 1) + M(1, 2);
         }
 
         // 由于box的点对齐后会出现 脸不全的情况,需要使用对齐后的关键点来矫正box
 
         //auto dis_left_eye_right_eye = landmark72[38].x - landmark72[21].x;
         //auto dis_left_month_left_eye = landmark72[58].y - landmark72[21].y;
         //box[0].x = min(box[0].x, landmark72[21].x - dis_left_eye_right_eye / 2);      // left top X;
         //box[0].y = min(box[0].y, landmark72[21].y - dis_left_month_left_eye / 1.1);       // left top Y;
         //box[box.size() - 1].x = max(box[box.size() - 1].x, landmark72[38].x + dis_left_eye_right_eye / 2);        // right bottom X;
         //box[box.size() - 1].y = max(box[box.size() - 1].y, landmark72[58].y + dis_left_month_left_eye / 1.1);     // right bottom y;
         //roi.x = max(0, int(box[0].x));
         //roi.y = max(0, int(box[0].y));
         //roi.width = min(int(box.at(box.size() - 1).x - roi.x) + 10, align_img.cols - roi.x);
         //roi.height = min(int(box.at(box.size() - 1).y - roi.y) + 10, align_img.rows - roi.y);
 
         // 使用脸部外围的极值点来矫正
         double min_x = landmark72[0].x, min_y = landmark72[41].y;
         double max_x = landmark72[12].x, max_y = landmark72[6].y;
         box[0].x = min(box[0].x, min_x);
         box[0].y = min(box[0].y, min_y);
         roi.x = max(0, int(box[0].x));
         roi.y = max(0, int(box[0].y));
         roi.width = min(int(max_x - roi.x) + 5, align_img.cols - roi.x);
         roi.height = min(int(max_y - roi.y) + 5, align_img.rows - roi.y);
         if (roi.width <= 0 || roi.height <= 0)
         {
             return align_img;
         }
 
         Mat align_face = align_img(roi);
 
         //// draw box & keypoints
         //rectangle(align_img, roi, Scalar(0, 0, 255), 1, 1);
         //for (size_t k = 0; k < landmark72.size(); k++)
         //{
         //  circle(align_img, landmark72.at(k), 2, Scalar(0, 0, 255), 1);
         //}
 
         //resize(align_face, align_face, Size(300, 350));
 
         //imshow("src", src_frame);
         //imshow("align2", align_img);
         //imshow("align3", align_face);
         //waitKey(0);
 
         return align_face;
     }
     =================================================
 3 输出
     3.1 输出的图像就是垂直的人脸图像

  Python 实现过程:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
1 人脸检测
     1.1 使用mtcnn-tensorflow进行人脸检测,会输出face box和landmark5
         face box: [x1,y1,x2,y2]
         landmark5: [left_eye,right_eye, nose, month_left, month_right]
 2 图像变换(使用numpy矩阵库)
     2.1 使用SVD分解, 计算变换矩阵,
     2.2 进行图像的仿射变换
     ==========================================
              
     # 计算旋转矩阵
     def transformation_from_points(points1, points2):
         points1 = points1.astype(np.float64)
         points2 = points2.astype(np.float64)
         c1 = np.mean(points1, axis=0)
         c2 = np.mean(points2, axis=0)
         points1 -= c1
         points2 -= c2
         s1 = np.std(points1)
         s2 = np.std(points2)
         points1 /= s1
         points2 /= s2
         U, S, Vt = np.linalg.svd(points1.T * points2)
         R = (U * Vt).T
         M = np.vstack([
             np.hstack(((s2 / s1) * R, c2.T - (s2 / s1) * R * c1.T)),
             np.asmatrix([0., 0., 1.])])
         return M
 
 
     # 关键点对齐
     def landmark_alignment(src_landmark, M):
         M_matrix = np.asmatrix(M)
         assert M_matrix.shape == (3, 3)
         rows, cols = src_landmark.shape
         src_landmark2 = src_landmark.copy()
         for i in range(rows):
             x, y = src_landmark[i, 0], src_landmark[i, 1]
             x1 = x * M_matrix[0, 0] + y * M_matrix[0, 1] + M_matrix[0, 2]
             y1 = x * M_matrix[1, 0] + y * M_matrix[1, 1] + M_matrix[1, 2]
             src_landmark2[i] = [x1, y1]
 
         src_landmark2 = src_landmark2.astype(np.int)
         return src_landmark2
 
 
     # 人脸对齐
     def face_alignment(src_landmark5, image_numpy):
         h, w, c = image_numpy.shape
         # 5点对齐后的基准点
         dst_landmark5 = np.asmatrix([[30.2946, 51.6963],  # left eye
                                      [65.5318, 51.6963],  # right eye
                                      [48.0252, 71.7366],  # nose
                                      [33.5493, 92.3655],  # left month
                                      [62.7299, 92.3655]])  # right month
         # 68点对齐后的基准点
         dst_landmark68 = np.asmatrix([[282, 156], [278, 176], [277, 198], [276, 219],
                                       [279, 241], [287, 262], [299, 280], [315, 293],
                                       [333, 300], [352, 300], [372, 293], [391, 282],
                                       [406, 270], [418, 253], [426, 236], [434, 217],
                                       [439, 197], [301, 138], [313, 128], [328, 127],
                                       [343, 130], [356, 138], [384, 144], [400, 142],
                                       [417, 145], [431, 156], [437, 171], [365, 160],
                                       [362, 174], [359, 188], [357, 202], [337, 211],
                                       [344, 215], [352, 219], [360, 219], [368, 218],
                                       [312, 152], [322, 147], [332, 149], [340, 159],
                                       [330, 159], [320, 157], [385, 169], [396, 164],
                                       [407, 167], [414, 176], [405, 177], [394, 174],
                                       [317, 242], [329, 237], [341, 235], [347, 238],
                                       [356, 237], [364, 243], [371, 253], [361, 258],
                                       [351, 259], [343, 259], [335, 257], [326, 251],
                                       [322, 242], [339, 243], [346, 245], [354, 245],
                                       [366, 251], [353, 247], [345, 247], [338, 245]])
 
         # 计算旋转矩阵
         M = transformation_from_points(src_landmark5, dst_landmark5)
         # 旋转图像
         align_image = cv2.warpAffine(image_numpy, M[:2], (w, h))
 
         # M = cv2.getPerspectiveTransform(np.asarray(src_landmark5, np.float32),
         #                                 np.asarray(dst_landmark5, np.float32))
         # align_image = cv2.warpPerspective(image_numpy, M, (w, h))
         return align_image, M
     ==========================================
 3 输出
     3.1 输出的图像就是垂直的人脸图像

  

posted @   dangxusheng  阅读(1726)  评论(1编辑  收藏  举报
编辑推荐:
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
· 没有源码,如何修改代码逻辑?
阅读排行:
· 全程不用写代码,我用AI程序员写了一个飞机大战
· DeepSeek 开源周回顾「GitHub 热点速览」
· 记一次.NET内存居高不下排查解决与启示
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· .NET10 - 预览版1新功能体验(一)
点击右上角即可分享
微信分享提示