深度学习-部分数据增强python代码实现
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 | 数据增强策略: 1 在线模式 - - 训练中 随机裁剪(完全随机,四个角 + 中心) crop def random_crop(img, scale = [ 0.8 , 1.0 ], ratio = [ 3. / 4. , 4. / 3. ], resize_w = 100 , resize_h = 100 ): """ 随机裁剪 :param img: :param scale: 缩放 :param ratio: :param resize_w: :param resize_h: :return: """ aspect_ratio = math.sqrt(np.random.uniform( * ratio)) w = 1. * aspect_ratio h = 1. / aspect_ratio src_h, src_w = img.shape[: 2 ] bound = min (( float (src_w) / src_h) / (w * * 2 ), ( float (src_h) / src_w) / (h * * 2 )) scale_max = min (scale[ 1 ], bound) scale_min = min (scale[ 0 ], bound) target_area = src_h * src_w * np.random.uniform(scale_min, scale_max) target_size = math.sqrt(target_area) w = int (target_size * w) h = int (target_size * h) i = np.random.randint( 0 , src_w - w + 1 ) j = np.random.randint( 0 , src_h - h + 1 ) img = img[j:j + h, i:i + w] img = cv2.resize(img, (resize_w, resize_h)) return img def rule_crop(img, box_ratio = ( 3. / 4 , 3. / 4 ), location_type = 'LT' , resize_w = 100 , resize_h = 100 ): """ 按照一定规则进行裁剪, 直接在原图尺寸上操作,不对原图进行 :param img: :param box_ratio: 剪切的 比例: (宽度上的比例, 高度上的比例) :param location_type: 具体在=哪个位置: 以下其中一个: LR : 左上角 RT : 右上角 LB : 左下角 RB : 右下角 CC : 中心 :param resize_w: 输出图的width :param resize_h: 输出图的height :return: """ assert location_type in ( 'LT' , 'RT' , 'LB' , 'RB' , 'CC' ), 'must have a location .' is_gray = False if len (img.shape) = = 3 : h, w, c = img.shape elif len (img.shape) = = 2 : h, w = img.shape is_gray = True crop_w, crop_h = int (w * box_ratio[ 0 ]), int (h * box_ratio[ 1 ]) crop_img = np.zeros([ 10 , 10 ]) if location_type = = 'LT' : crop_img = img[:crop_h, :crop_w, :] if not is_gray else img[:crop_h, :crop_w] elif location_type = = 'RT' : crop_img = img[:crop_h:, w - crop_w:, :] if not is_gray else img[:crop_h:, w - crop_w:] elif location_type = = 'LB' : crop_img = img[h - crop_h:, :crop_w, :] if not is_gray else img[h - crop_h:, :crop_w] elif location_type = = 'RB' : crop_img = img[h - crop_h:, w - crop_w:, :] if not is_gray else img[h - crop_h:, w - crop_w:] elif location_type = = 'CC' : start_h = (h - crop_h) / / 2 start_w = (w - crop_w) / / 2 crop_img = img[start_h:start_h + crop_h, start_w:start_w + crop_w, :] if not is_gray else img[ start_h:start_h + crop_h, start_w:start_w + crop_w] resize = cv2.resize(crop_img, (resize_w, resize_h)) return resize 水平翻转 flip def random_flip(img, mode = 1 ): """ 随机翻转 :param img: :param model: 1=水平翻转 / 0=垂直 / -1=水平垂直 :return: """ assert mode in ( 0 , 1 , - 1 ), "mode is not right" flip = np.random.choice( 2 ) * 2 - 1 # -1 / 1 if mode = = 1 : img = img[:, ::flip, :] elif mode = = 0 : img = img[::flip, :, :] elif mode = = - 1 : img = img[::flip, ::flip, :] return img def flip(img, mode = 1 ): """ 翻转 :param img: :param mode: 1=水平翻转 / 0=垂直 / -1=水平垂直 :return: """ assert mode in ( 0 , 1 , - 1 ), "mode is not right" return cv2.flip(img, flipCode = mode) 随机锐化增强 def random_USM(img, gamma = 0. ): """ USM锐化增强算法可以去除一些细小的干扰细节和图像噪声,比一般直接使用卷积锐化算子得到的图像更可靠。 output = 原图像−w∗高斯滤波(原图像)/(1−w) 其中w为上面所述的系数,取值范围为0.1~0.9,一般取0.6。 :param img: :param gamma: :return: """ blur = cv2.GaussianBlur(img, ( 0 , 0 ), 25 ) img_sharp = cv2.addWeighted(img, 1.5 , blur, - 0.3 , gamma) return img_sharp 2 离线模式 2.1 随机扰动 噪声(高斯、自定义) noise def random_noise(img, rand_range = ( 3 , 20 )): """ 随机噪声 :param img: :param rand_range: (min, max) :return: """ img = np.asarray(img, np. float ) sigma = random.randint( * rand_range) nosie = np.random.normal( 0 , sigma, size = img.shape) img + = nosie img = np.uint8(np.clip(img, 0 , 255 )) return img 滤波(高斯、平滑、均值、中值、最大最小值、双边、引导、运动) # 各种滤波原理介绍:https://blog.csdn.net/hellocsz/article/details/80727972 def gaussianBlue(img, ks = ( 7 , 7 ), stdev = 1.5 ): """ 高斯模糊, 可以对图像进行平滑处理,去除尖锐噪声 :param img: :param ks: 卷积核 :param stdev: 标准差 :return: """ return cv2.GaussianBlur(img, ( 7 , 7 ), 1.5 ) # 随机滤波 def ranndom_blur(img, ksize = ( 3 , 3 )): """ 随机滤波 :param img: :param ksize: :return: """ blur_types = [ 'gaussian' , 'median' , 'bilateral' , 'mean' , 'box' ] assert len (blur_types) > 0 blur_func = None blur_index = random.choice(blur_types) if blur_index = = 0 : # 高斯模糊, 比均值滤波更平滑,边界保留更加好 blur_func = cv2.GaussianBlur elif blur_index = = 1 : # 中值滤波, 在边界保存方面好于均值滤波,但在模板变大的时候会存在一些边界的模糊。对于椒盐噪声有效 blur_func = cv2.medianBlur elif blur_index = = 2 : # 双边滤波, 非线性滤波,保留较多的高频信息,不能干净的过滤高频噪声,对于低频滤波较好,不能去除脉冲噪声 blur_func = cv2.bilateralFilter elif blur_index = = 3 : # 均值滤波, 在去噪的同时去除了很多细节部分,将图像变得模糊 blur_func = cv2.blur elif blur_index = = 4 : # 盒滤波器 blur_func = cv2.boxFilter img_blur = blur_func(src = img, ksize = ksize) return img_blur # 直方图均衡化 def equalize_hist(img): """ 直方图均衡化 :param img: :return: """ gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) hist = cv2.equalizeHist(gray) rgb = cv2.cvtColor(hist, cv2.COLOR_GRAY2RGB) return rgb 2.2 转换 旋转 rorate def rotate(img, angle, scale = 1.0 ): """ 旋转 :param img: :param angle: 旋转角度, >0 表示逆时针, :param scale: :return: """ height, width = img.shape[: 2 ] # 获取图像的高和宽 center = (width / 2 , height / 2 ) # 取图像的中点 M = cv2.getRotationMatrix2D(center, angle, scale) # 获得图像绕着某一点的旋转矩阵 # cv2.warpAffine()的第二个参数是变换矩阵,第三个参数是输出图像的大小 rotated = cv2.warpAffine(img, M, (height, width)) return rotated def random_rotate(img, angle_range = ( - 10 , 10 )): """ 随机旋转 :param img: :param angle_range: 旋转角度范围 (min,max) >0 表示逆时针, :return: """ height, width = img.shape[: 2 ] # 获取图像的高和宽 center = (width / 2 , height / 2 ) # 取图像的中点 angle = random.randrange( * angle_range, 1 ) M = cv2.getRotationMatrix2D(center, angle, 1.0 ) # 获得图像绕着某一点的旋转矩阵 # cv2.warpAffine()的第二个参数是变换矩阵,第三个参数是输出图像的大小 rotated = cv2.warpAffine(img, M, (height, width)) return rotated 偏移 shift def shift(img, x_offset, y_offset): """ 偏移,向右 向下 :param img: :param x_offset: >0表示向右偏移px, <0表示向左 :param y_offset: >0表示向下偏移px, <0表示向上 :return: """ h, w, _ = img.shape M = np.array([[ 1 , 0 , x_offset], [ 0 , 1 , y_offset]], dtype = np. float ) return cv2.warpAffine(img, M, (w, h)) 倾斜 skew ... 缩放 scale def resize_img(img, resize_w, resize_h): height, width = img.shape[: 2 ] # 获取图片的高和宽 return cv2.resize(img, (resize_w, resize_h), interpolation = cv2.INTER_CUBIC) RGB / BGR - >HSV def rgb2hsv_py(r, g, b): # from https://blog.csdn.net/weixin_43360384/article/details/84871521 r, g, b = r / 255.0 , g / 255.0 , b / 255.0 mx = max (r, g, b) mn = min (r, g, b) m = mx - mn if mx = = mn: h = 0 elif mx = = r: if g > = b: h = ((g - b) / m) * 60 else : h = ((g - b) / m) * 60 + 360 elif mx = = g: h = ((b - r) / m) * 60 + 120 elif mx = = b: h = ((r - g) / m) * 60 + 240 if mx = = 0 : s = 0 else : s = m / mx v = mx return h, s, v def rgb2hsv_cv(img): # from https://blog.csdn.net/qq_38332453/article/details/89258058 h = img.shape[ 0 ] w = img.shape[ 1 ] H = np.zeros((h,w),np.float32) S = np.zeros((h, w), np.float32) V = np.zeros((h, w), np.float32) r,g,b = cv2.split(img) r, g, b = r / 255.0 , g / 255.0 , b / 255.0 for i in range ( 0 , h): for j in range ( 0 , w): mx = max ((b[i, j], g[i, j], r[i, j])) mn = min ((b[i, j], g[i, j], r[i, j])) V[i, j] = mx if V[i, j] = = 0 : S[i, j] = 0 else : S[i, j] = (V[i, j] - mn) / V[i, j] if mx = = mn: H[i, j] = 0 elif V[i, j] = = r[i, j]: if g[i, j] > = b[i, j]: H[i, j] = ( 60 * ((g[i, j]) - b[i, j]) / (V[i, j] - mn)) else : H[i, j] = ( 60 * ((g[i, j]) - b[i, j]) / (V[i, j] - mn)) + 360 elif V[i, j] = = g[i, j]: H[i, j] = 60 * ((b[i, j]) - r[i, j]) / (V[i, j] - mn) + 120 elif V[i, j] = = b[i, j]: H[i, j] = 60 * ((r[i, j]) - g[i, j]) / (V[i, j] - mn) + 240 H[i,j] = H[i,j] / 2 return H, S, V 图片叠加与融合 def addWeight(src1, alpha, src2, beta, gamma): """ g (x) = (1 − α)f0 (x) + αf1 (x) #a→(0,1)不同的a值可以实现不同的效果 dst = src1 * alpha + src2 * beta + gamma :param src1: img1 :param alpha: :param src2: img2 :param beta: :param gamma: :return: """ assert src1.shap = = src2.shape return cv2.addWeighted(src1, alpha, src2, beta, gamma) 颜色抖动(亮度\色度\饱和度\对比度) color jitter def adjust_contrast_bright(img, contrast = 1.2 , brightness = 100 ): """ 调整亮度与对比度 dst = img * contrast + brightness :param img: :param contrast: 对比度 越大越亮 :param brightness: 亮度 0~100 :return: """ # 像素值会超过0-255, 因此需要截断 return np.uint8(np.clip((contrast * img + brightness), 0 , 255 )) def pytorch_color_jitter(img): return torchvision.transforms.ColorJitter(brightness = 0 , contrast = 0 , saturation = 0 , hue = 0 ) # gamma 变换, def gamma_transform(img, gamma = 1.0 ): """ https://blog.csdn.net/zfjBIT/article/details/85113946 伽马变换就是用来图像增强,其提升了暗部细节,简单来说就是通过非线性变换, 让图像从暴光强度的线性响应变得更接近人眼感受的响应,即将漂白(相机曝光)或过暗(曝光不足)的图片,进行矫正 :param img: :param gamma: # gamma = random.random() * random.choice([0.5, 1, 3, 5]) >1, 变暗 <1, 漂白 :return: """ assert 0 < gamma < 25. # 具体做法先归一化到1,然后gamma作为指数值求出新的像素值再还原 gamma_table = [np.power(x / 255.0 , gamma) * 255.0 for x in range ( 256 )] gamma_table = np. round (np.array(gamma_table)).astype(np.uint8) # 实现映射用的是Opencv的查表函数 return cv2.LUT(img, gamma_table) # mix up 图片混合 def mixup(batch_x, batch_y, alpha): """ Returns mixed inputs, pairs of targets, and lambda :param batch_x: :param batch_y: :param alpha: :return: """ if alpha > 0 : lam = np.random.beta(alpha, alpha) else : lam = 1 batch_size = batch_x.shape[ 0 ] index = [i for i in range (batch_size)] random.shuffle(index) mixed_x = lam * batch_x + ( 1 - lam) * batch_x[index, :] y_a, y_b = batch_y, batch_y[index] return mixed_x, y_a, y_b, lam 3D 几何变换 ... |
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
· 没有源码,如何修改代码逻辑?
· 全程不用写代码,我用AI程序员写了一个飞机大战
· DeepSeek 开源周回顾「GitHub 热点速览」
· 记一次.NET内存居高不下排查解决与启示
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· .NET10 - 预览版1新功能体验(一)