opencv 相关函数集合
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 | /* 合并多图像矩阵到一个大矩阵上 */ Mat mergeImgMats(vector<Mat> img_mats, int per_width, int per_height, int cols, int split_w) { int count = img_mats.size(); CV_Assert(count > 0); // 定义 行 int rows = count % cols == 0 ? count / cols : count / cols + 1; //准备一个大矩阵 Mat bigMat(per_height * rows + split_w * (rows - 1), per_width*cols + split_w * (cols - 1), img_mats[0].type()); bigMat.setTo(Scalar::all(0)); Mat tmp; for ( size_t i = 0; i < count; i++) { resize(img_mats[i], tmp, Size(per_width, per_height)); int location_x = 0, location_y = 0;; //copy to location if (i < cols) { //第一行 location_x = i * (per_width + split_w); location_y = 0; } else { // 第二行开始 location_x = i % cols * (per_width + split_w); location_y = i / cols * (per_height + split_w); } Mat roi = bigMat(Rect(location_x, location_y, per_width, per_height)); tmp.copyTo(roi); } tmp.release(); return bigMat; } int BGR2YUV420P(Mat img, uint8_t *yuv_data, int w, int h) { assert (w % 2 == 0 && h % 2 == 0); Mat yuv; cvtColor(img, yuv, CV_BGR2YUV_I420); //CV_BGR2YUV_I420 Mat Y = yuv(Rect(0, 0, w, h)); Mat U = yuv(Rect(0, h, w / 2, h / 2)); Mat V = yuv(Rect(w / 2, h, w / 2, h / 2)); memcpy_s(yuv_data, w * h, Y.data, h * w); for ( size_t i = 0; i < h / 2; i++) { for ( size_t j = 0; j < w; j++) { int index = i * w + j; if (j < 2 / w) yuv_data[w*h + index] = U.data[index]; else yuv_data[w*h + index] = V.data[index - w / 2]; } } yuv.release(); return 0; } # YUV --> AVI # 只适用于YUV格式数据直接存储的视频文件 int YuvFile_to_AviFile(string &yuv_filename, int src_img_w, int src_img_h, string &avi_filenanme, int dst_img_w, int dst_img_h) { int img_w = src_img_w, img_h = src_img_h; int scale_w = dst_img_w, scale_h = dst_img_h; int yuv_size = img_w * img_h * 3 / 2; FILE *f = NULL; uint8_t *yuv_data = new uint8_t[yuv_size]; auto code = fopen_s(&f, yuv_filename.c_str(), "rb" ); assert (code == 0); Mat img(img_h, img_w, CV_8UC3); Mat yuvFrame(img_h * 3 / 2, img_w, CV_8UC1, yuv_data); VideoWriter newcw; auto flag = newcw.open(avi_filenanme, CV_FOURCC( 'M' , 'P' , '4' , '2' ), 25.0, Size(scale_w, scale_h)); assert ( true == flag); while (1) { auto _size = fread_s(yuv_data, yuv_size, 1, yuv_size, f); if (_size < yuv_size) { break ; } cvtColor(yuvFrame, img, CV_YUV420p2RGB); assert (img.empty() == false && img.cols > 0); if (scale_w != img_w || scale_h != img_h) { resize(img, img, Size(scale_w, scale_h)); } newcw.write(img); } yuvFrame.release(); img.release(); delete [] yuv_data; fclose (f); newcw.release(); return 0; } # 编码 static unsigned char * img2Encode(Mat src, int & dataLength) { vector<unsigned char > inImage; imencode( ".jpg" , src, inImage); size_t datalen = inImage.size(); unsigned char *outImage = new unsigned char [datalen]; for ( int i = 0; i < datalen; i++) { outImage[i] = inImage[i]; } inImage.clear(); dataLength = datalen; return outImage; } # 解码 static Mat img2Decode(unsigned char *inImage, int dataLength) { vector<unsigned char > buff; for ( int i = 0; i < dataLength; i++) { buff.push_back(inImage[i]); } Mat mat = imdecode(buff, CV_LOAD_IMAGE_COLOR); buff.clear(); return mat; } |
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
· 开发者必知的日志记录最佳实践
· SQL Server 2025 AI相关能力初探
· 震惊!C++程序真的从main开始吗?99%的程序员都答错了
· winform 绘制太阳,地球,月球 运作规律
· 【硬核科普】Trae如何「偷看」你的代码?零基础破解AI编程运行原理
· 上周热点回顾(3.3-3.9)
· 超详细:普通电脑也行Windows部署deepseek R1训练数据并当服务器共享给他人