安卓开发日记35

实验目的

l  使学生熟练安装扩展库numpy、requests、bs4、pandas、seaborn、matplotlib等;

l  使学生熟悉使用标准库cvs操作文件;

l  使学生熟悉使用pandas进行数据分析的基本操作;

l  使学生了解使用seaborn绘制热力图的方法;

l  使学生熟练使用matplotlib进行数据可视化;

l  使学生熟练使用nmupy进行科学计算;

l  使学生熟练运用requests库和bs4库进行基本的数据爬取

实验环境及实验准备

l  所需硬件环境为微机;

l  所需软件环境为Python 3.X等;

l  掌握Python下numpy、requests、bs4、pandas、seaborn、matplotlib、cvs等的使用;

实验内容

(一)、中国大学排名数据分析与可视化;

【源代码程序】

import requests
from bs4 import BeautifulSoup
import matplotlib.pyplot as plt

# 获取网页内容
def get_page_content(year):
    url = f"https://www.shanghairanking.cn/rankings/bcur/{year}.html".format(year=year)  # 修正URL格式错误
    try:
        response = requests.get(url)
        response.raise_for_status()
        # 明确指定使用UTF-8编码解码内容
        return response.content.decode('utf-8')
    except requests.RequestException as e:
        print(f"请求错误: {year}年 - {e}")
        return None


# 解析网页内容
def parse_content(content):
    if content is None:
        print("未获取到网页内容,无法解析")
        return [], []

    soup = BeautifulSoup(content, 'html.parser')
    table = soup.find('table', class_='rk-table')  # 定位表格

    if table is None:
        print("未找到预期的表格结构")
        return [], []

    rows = table.find_all("tr")[1:]  # 跳过表头
    universities = []
    ranks = []

    for row in rows:
        cols = row.find_all("td")
        if len(cols) >= 2:
            try:
                rank = cols[0].text.strip()
                university = cols[1].find('a', class_='name-cn').text.strip()  # 假定学校名称在a标签内
                universities.append(university)
                ranks.append(int(rank) if rank.isdigit() else None)
            except (AttributeError, ValueError):
                print("解析错误,跳过当前行")
                continue

    return universities, ranks

# 可视化展示
def plot_data(years, universities):
    assert len(years) == len(universities), "年数不匹配"
    for year, uni_list in zip(years, universities):
        plt.plot(range(1, len(uni_list)+1, uni_list), label=year)  # 修正绘图逻辑

    plt.xlabel('排名')
    plt.ylabel('Universities')
    plt.xticks(range(1, len(uni_list)+1))  # 调整x轴刻度
    plt.legend()
    plt.tight_layout()
    plt.show()

years = ['2015', '2016', '2017', '2018', '2019']
all_universities = []

for year in years:
    content = get_page_content(year)
    universities, _ = parse_content(content)  # 只需大学名称
    if universities:
        all_universities.append(universities)
        print(f"----- {year}年软科最好大学排名 Top 10 -----")
        for i, university in enumerate(universities, 1):
            if i<=10:
             print(f"{i}. {university}")
    else:
        print(f"未找到{year}年排名信息")

if all_universities:
    plot_data(years, all_universities)


    def get_rank_by_university_and_year(university, year):
        url = f"https://www.shanghairanking.cn/rankings/bcur/{year}.html"
        try:
            response = requests.get(url)
            response.raise_for_status()
            soup = BeautifulSoup(response.content.decode('utf-8'), 'html.parser')
            table = soup.find('table', class_='rk-table')

            if table is None:
                return None

            rows = table.find_all("tr")[1:]  # Skip header row
            for row in rows:
                cols = row.find_all("td")
                if len(cols) >= 2:
                    rank_text = cols[0].text.strip()
                    name = cols[1].find('a', class_='name-cn').text.strip()
                    if name == university:
                        return int(rank_text) if rank_text.isdigit() else None
        except requests.RequestException as e:
            print(f"请求错误: {year}年 - {e}")
            return None


    def main():
        while True:
            university = input("请输入大学名称(输入'q'退出):")
            if university.lower() == 'q':
                print("查询结束。")
                break

            year_str = input("请输入年份(例如:2023):")
            if not year_str.isdigit() or int(year_str) < 2015:
                print("年份输入无效,请输入2015年及以后的整数年份。")
                continue

            ranking = get_rank_by_university_and_year(university, year_str)
            if ranking is not None:
                print(f"{university}在{year_str}年的排名是:{ranking}")
            else:
                print(f"未能找到{university}在{year_str}年的排名信息。")

            # 提供重新查询或结束的选择
            choice = input("是否重新查询?(y/n): ")
            if choice.lower() != 'y':
                print("查询结束。")
                break


    if __name__ == "__main__":
        main()

【运行测试

 

(二)、豆瓣图书评论数据分析与可视化;

【源代码程序】

import re
from collections import Counter

import requests
from lxml import etree
import pandas as pd
import jieba
import matplotlib.pyplot as plt
from wordcloud import WordCloud

headers = {
    "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/101.0.4951.54 Safari/537.36 Edg/101.0.1210.39"
}

comments = []
words = []


def regex_change(line):
    # 前缀的正则
    username_regex = re.compile(r"^\d+::")
    # URL,为了防止对中文的过滤,所以使用[a-zA-Z0-9]而不是\w
    url_regex = re.compile(r"""
        (https?://)?
        ([a-zA-Z0-9]+)
        (\.[a-zA-Z0-9]+)
        (\.[a-zA-Z0-9]+)*
        (/[a-zA-Z0-9]+)*
    """, re.VERBOSE | re.IGNORECASE)
    # 剔除日期
    data_regex = re.compile(u"""        #utf-8编码
        年 |
        月 |
        日 |
        (周一) |
        (周二) |
        (周三) |
        (周四) |
        (周五) |
        (周六)
    """, re.VERBOSE)
    # 剔除所有数字
    decimal_regex = re.compile(r"[^a-zA-Z]\d+")
    # 剔除空格
    space_regex = re.compile(r"\s+")
    regEx = "[\n”“|,,;;''/?! 。的了是]"  # 去除字符串中的换行符、中文冒号、|,需要去除什么字符就在里面写什么字符
    line = re.sub(regEx, "", line)
    line = username_regex.sub(r"", line)
    line = url_regex.sub(r"", line)
    line = data_regex.sub(r"", line)
    line = decimal_regex.sub(r"", line)
    line = space_regex.sub(r"", line)
    return line


def getComments(url):
    score = 0
    resp = requests.get(url, headers=headers).text
    html = etree.HTML(resp)
    comment_list = html.xpath(".//div[@class='comment']")
    for comment in comment_list:
        status = ""
        name = comment.xpath(".//span[@class='comment-info']/a/text()")[0]  # 用户名
        content = comment.xpath(".//p[@class='comment-content']/span[@class='short']/text()")[0]  # 短评内容
        content = str(content).strip()
        word = jieba.cut(content, cut_all=False, HMM=False)
        time = comment.xpath(".//span[@class='comment-info']/a/text()")[1]  # 评论时间
        mark = comment.xpath(".//span[@class='comment-info']/span/@title")  # 评分
        if len(mark) == 0:
            score = 0
        else:
            for i in mark:
                status = str(i)
            if status == "力荐":
                score = 5
            elif status == "推荐":
                score = 4
            elif status == "还行":
                score = 3
            elif status == "较差":
                score = 2
            elif status == "很差":
                score = 1
        good = comment.xpath(".//span[@class='comment-vote']/span[@class='vote-count']/text()")[0]  # 点赞数(有用数)
        comments.append([str(name), content, str(time), score, int(good)])
        for i in word:
            if len(regex_change(i)) >= 2:
                words.append(regex_change(i))


def getWordCloud(words):
    # 生成词云
    all_words = []
    all_words += [word for word in words]
    dict_words = dict(Counter(all_words))
    bow_words = sorted(dict_words.items(), key=lambda d: d[1], reverse=True)
    print("热词前10位:")
    for i in range(10):
        print(bow_words[i])
    text = ' '.join(words)

    w = WordCloud(background_color='white',
                     width=1000,
                     height=700,
                     font_path='simhei.ttf',
                     margin=10).generate(text)
    plt.show()
    plt.imshow(w)
    w.to_file('wordcloud.png')


print("请选择以下选项:")
print("   1.热门评论")
print("   2.最新评论")
info = int(input())
print("前10位短评信息:")
title = ['用户名', '短评内容', '评论时间', '评分', '点赞数']
if info == 1:
    comments = []
    words = []
    for i in range(0, 60, 20):
        url = "https://book.douban.com/subject/10517238/comments/?start={}&limit=20&status=P&sort=new_score".format(
            i)  # 前3页短评信息(热门)
        getComments(url)
    df = pd.DataFrame(comments, columns=title)
    print(df.head(10))
    print("点赞数前10位的短评信息:")
    df = df.sort_values(by='点赞数', ascending=False)
    print(df.head(10))
    getWordCloud(words)
elif info == 2:
    comments = []
    words=[]
    for i in range(0, 60, 20):
        url = "https://book.douban.com/subject/10517238/comments/?start={}&limit=20&status=P&sort=time".format(
            i)  # 前3页短评信息(最新)
        getComments(url)
    df = pd.DataFrame(comments, columns=title)
    print(df.head(10))
    print("点赞数前10位的短评信息:")
    df = df.sort_values(by='点赞数', ascending=False)
    print(df.head(10))
    getWordCloud(words)

【运行测试】

 

(三)、函数图形1绘制;

【源代码程序】

import matplotlib.pyplot as plt
import numpy as np

x = np.arange(0, 10, 0.0001)
y1 = x ** 2
y2 = np.cos(x * 2)
y3 = y1 * y2
plt.plot(x, y1,linestyle='-.')
plt.plot(x, y2,linestyle=':')
plt.plot(x, y3,linestyle='--')
plt.savefig("3-1.png")
plt.show()

fig, subs = plt.subplots(2, 2)
subs[0][0].plot(x, y1)
subs[0][1].plot(x, y2)
subs[1][0].plot(x, y3)
plt.savefig("3-2.png")
plt.show()

【运行测试

 

(四)、函数图形2绘制;

【源代码程序】

import matplotlib.pyplot as plt
import numpy as np

x = np.arange(-2, 2, 0.0001)
y1 = np.sqrt(2 * np.sqrt(x ** 2) - x ** 2)
y2 = (-2.14) * np.sqrt(np.sqrt(2) - np.sqrt(np.abs(x)))
plt.plot(x, y1, 'r', x, y2, 'r')
plt.fill_between(x, y1, y2, facecolor='orange')
plt.savefig("heart.png")
plt.show()
posted @ 2024-05-08 21:02  大虚胖子  阅读(3)  评论(0编辑  收藏  举报