安卓开发日记35
一实验目的
l 使学生熟练安装扩展库numpy、requests、bs4、pandas、seaborn、matplotlib等;
l 使学生熟悉使用标准库cvs操作文件;
l 使学生熟悉使用pandas进行数据分析的基本操作;
l 使学生了解使用seaborn绘制热力图的方法;
l 使学生熟练使用matplotlib进行数据可视化;
l 使学生熟练使用nmupy进行科学计算;
l 使学生熟练运用requests库和bs4库进行基本的数据爬取
二实验环境及实验准备
l 所需硬件环境为微机;
l 所需软件环境为Python 3.X等;
l 掌握Python下numpy、requests、bs4、pandas、seaborn、matplotlib、cvs等的使用;
三实验内容
(一)、中国大学排名数据分析与可视化;
【源代码程序】
import requests
from bs4 import BeautifulSoup
import matplotlib.pyplot as plt
# 获取网页内容
def get_page_content(year):
url = f"https://www.shanghairanking.cn/rankings/bcur/{year}.html".format(year=year) # 修正URL格式错误
try:
response = requests.get(url)
response.raise_for_status()
# 明确指定使用UTF-8编码解码内容
return response.content.decode('utf-8')
except requests.RequestException as e:
print(f"请求错误: {year}年 - {e}")
return None
# 解析网页内容
def parse_content(content):
if content is None:
print("未获取到网页内容,无法解析")
return [], []
soup = BeautifulSoup(content, 'html.parser')
table = soup.find('table', class_='rk-table') # 定位表格
if table is None:
print("未找到预期的表格结构")
return [], []
rows = table.find_all("tr")[1:] # 跳过表头
universities = []
ranks = []
for row in rows:
cols = row.find_all("td")
if len(cols) >= 2:
try:
rank = cols[0].text.strip()
university = cols[1].find('a', class_='name-cn').text.strip() # 假定学校名称在a标签内
universities.append(university)
ranks.append(int(rank) if rank.isdigit() else None)
except (AttributeError, ValueError):
print("解析错误,跳过当前行")
continue
return universities, ranks
# 可视化展示
def plot_data(years, universities):
assert len(years) == len(universities), "年数不匹配"
for year, uni_list in zip(years, universities):
plt.plot(range(1, len(uni_list)+1, uni_list), label=year) # 修正绘图逻辑
plt.xlabel('排名')
plt.ylabel('Universities')
plt.xticks(range(1, len(uni_list)+1)) # 调整x轴刻度
plt.legend()
plt.tight_layout()
plt.show()
years = ['2015', '2016', '2017', '2018', '2019']
all_universities = []
for year in years:
content = get_page_content(year)
universities, _ = parse_content(content) # 只需大学名称
if universities:
all_universities.append(universities)
print(f"----- {year}年软科最好大学排名 Top 10 -----")
for i, university in enumerate(universities, 1):
if i<=10:
print(f"{i}. {university}")
else:
print(f"未找到{year}年排名信息")
if all_universities:
plot_data(years, all_universities)
def get_rank_by_university_and_year(university, year):
url = f"https://www.shanghairanking.cn/rankings/bcur/{year}.html"
try:
response = requests.get(url)
response.raise_for_status()
soup = BeautifulSoup(response.content.decode('utf-8'), 'html.parser')
table = soup.find('table', class_='rk-table')
if table is None:
return None
rows = table.find_all("tr")[1:] # Skip header row
for row in rows:
cols = row.find_all("td")
if len(cols) >= 2:
rank_text = cols[0].text.strip()
name = cols[1].find('a', class_='name-cn').text.strip()
if name == university:
return int(rank_text) if rank_text.isdigit() else None
except requests.RequestException as e:
print(f"请求错误: {year}年 - {e}")
return None
def main():
while True:
university = input("请输入大学名称(输入'q'退出):")
if university.lower() == 'q':
print("查询结束。")
break
year_str = input("请输入年份(例如:2023):")
if not year_str.isdigit() or int(year_str) < 2015:
print("年份输入无效,请输入2015年及以后的整数年份。")
continue
ranking = get_rank_by_university_and_year(university, year_str)
if ranking is not None:
print(f"{university}在{year_str}年的排名是:{ranking}")
else:
print(f"未能找到{university}在{year_str}年的排名信息。")
# 提供重新查询或结束的选择
choice = input("是否重新查询?(y/n): ")
if choice.lower() != 'y':
print("查询结束。")
break
if __name__ == "__main__":
main()
【运行测试】
(二)、豆瓣图书评论数据分析与可视化;
【源代码程序】
import re
from collections import Counter
import requests
from lxml import etree
import pandas as pd
import jieba
import matplotlib.pyplot as plt
from wordcloud import WordCloud
headers = {
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/101.0.4951.54 Safari/537.36 Edg/101.0.1210.39"
}
comments = []
words = []
def regex_change(line):
# 前缀的正则
username_regex = re.compile(r"^\d+::")
# URL,为了防止对中文的过滤,所以使用[a-zA-Z0-9]而不是\w
url_regex = re.compile(r"""
(https?://)?
([a-zA-Z0-9]+)
(\.[a-zA-Z0-9]+)
(\.[a-zA-Z0-9]+)*
(/[a-zA-Z0-9]+)*
""", re.VERBOSE | re.IGNORECASE)
# 剔除日期
data_regex = re.compile(u""" #utf-8编码
年 |
月 |
日 |
(周一) |
(周二) |
(周三) |
(周四) |
(周五) |
(周六)
""", re.VERBOSE)
# 剔除所有数字
decimal_regex = re.compile(r"[^a-zA-Z]\d+")
# 剔除空格
space_regex = re.compile(r"\s+")
regEx = "[\n”“|,,;;''/?! 。的了是]" # 去除字符串中的换行符、中文冒号、|,需要去除什么字符就在里面写什么字符
line = re.sub(regEx, "", line)
line = username_regex.sub(r"", line)
line = url_regex.sub(r"", line)
line = data_regex.sub(r"", line)
line = decimal_regex.sub(r"", line)
line = space_regex.sub(r"", line)
return line
def getComments(url):
score = 0
resp = requests.get(url, headers=headers).text
html = etree.HTML(resp)
comment_list = html.xpath(".//div[@class='comment']")
for comment in comment_list:
status = ""
name = comment.xpath(".//span[@class='comment-info']/a/text()")[0] # 用户名
content = comment.xpath(".//p[@class='comment-content']/span[@class='short']/text()")[0] # 短评内容
content = str(content).strip()
word = jieba.cut(content, cut_all=False, HMM=False)
time = comment.xpath(".//span[@class='comment-info']/a/text()")[1] # 评论时间
mark = comment.xpath(".//span[@class='comment-info']/span/@title") # 评分
if len(mark) == 0:
score = 0
else:
for i in mark:
status = str(i)
if status == "力荐":
score = 5
elif status == "推荐":
score = 4
elif status == "还行":
score = 3
elif status == "较差":
score = 2
elif status == "很差":
score = 1
good = comment.xpath(".//span[@class='comment-vote']/span[@class='vote-count']/text()")[0] # 点赞数(有用数)
comments.append([str(name), content, str(time), score, int(good)])
for i in word:
if len(regex_change(i)) >= 2:
words.append(regex_change(i))
def getWordCloud(words):
# 生成词云
all_words = []
all_words += [word for word in words]
dict_words = dict(Counter(all_words))
bow_words = sorted(dict_words.items(), key=lambda d: d[1], reverse=True)
print("热词前10位:")
for i in range(10):
print(bow_words[i])
text = ' '.join(words)
w = WordCloud(background_color='white',
width=1000,
height=700,
font_path='simhei.ttf',
margin=10).generate(text)
plt.show()
plt.imshow(w)
w.to_file('wordcloud.png')
print("请选择以下选项:")
print(" 1.热门评论")
print(" 2.最新评论")
info = int(input())
print("前10位短评信息:")
title = ['用户名', '短评内容', '评论时间', '评分', '点赞数']
if info == 1:
comments = []
words = []
for i in range(0, 60, 20):
url = "https://book.douban.com/subject/10517238/comments/?start={}&limit=20&status=P&sort=new_score".format(
i) # 前3页短评信息(热门)
getComments(url)
df = pd.DataFrame(comments, columns=title)
print(df.head(10))
print("点赞数前10位的短评信息:")
df = df.sort_values(by='点赞数', ascending=False)
print(df.head(10))
getWordCloud(words)
elif info == 2:
comments = []
words=[]
for i in range(0, 60, 20):
url = "https://book.douban.com/subject/10517238/comments/?start={}&limit=20&status=P&sort=time".format(
i) # 前3页短评信息(最新)
getComments(url)
df = pd.DataFrame(comments, columns=title)
print(df.head(10))
print("点赞数前10位的短评信息:")
df = df.sort_values(by='点赞数', ascending=False)
print(df.head(10))
getWordCloud(words)
【运行测试】
(三)、函数图形1绘制;
【源代码程序】
import matplotlib.pyplot as plt
import numpy as np
x = np.arange(0, 10, 0.0001)
y1 = x ** 2
y2 = np.cos(x * 2)
y3 = y1 * y2
plt.plot(x, y1,linestyle='-.')
plt.plot(x, y2,linestyle=':')
plt.plot(x, y3,linestyle='--')
plt.savefig("3-1.png")
plt.show()
fig, subs = plt.subplots(2, 2)
subs[0][0].plot(x, y1)
subs[0][1].plot(x, y2)
subs[1][0].plot(x, y3)
plt.savefig("3-2.png")
plt.show()
【运行测试】
(四)、函数图形2绘制;
【源代码程序】
import matplotlib.pyplot as plt
import numpy as np
x = np.arange(-2, 2, 0.0001)
y1 = np.sqrt(2 * np.sqrt(x ** 2) - x ** 2)
y2 = (-2.14) * np.sqrt(np.sqrt(2) - np.sqrt(np.abs(x)))
plt.plot(x, y1, 'r', x, y2, 'r')
plt.fill_between(x, y1, y2, facecolor='orange')
plt.savefig("heart.png")
plt.show()