Params(参数量)、Model_size(模型大小)和Flops(计算量)

Params(参数量)、Model_size(模型大小)和Flops(计算量)

参数量(params):

  • 参数的数量,通常以M为单位。
  • params = Kh × Kw × Cin × Cout

模型大小(模型大小):

  • 在一般的深度学习的框架中(如PyTorch),一般是32位存储,即一个参数用32个bit来存储。所以,一个拥有1M(这里的M是数量单位一百万)参数量的模型所需要的存储空间大小为:1M * 32bit = 32Mb = 4MB。

计算量(Flops):

  • 即浮点运算数,用来衡量算法/模型的复杂度。图通常只考虑乘加操作的数量,而且只考虑Conv和FC等参数层计算量,忽略BN和PReLU等。一般情况下,Conv和FC层也会忽略仅纯加操作的计算量,如偏置加和shortcut残差加等。目前技术只有BN和CNN可以不加偏置。
  • FLOPs = Kh * Kw * Cin * Cout * H * W
posted @   同淋雪  阅读(4774)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· 【自荐】一款简洁、开源的在线白板工具 Drawnix
· 没有Manus邀请码?试试免邀请码的MGX或者开源的OpenManus吧
· 园子的第一款AI主题卫衣上架——"HELLO! HOW CAN I ASSIST YOU TODAY
· 无需6万激活码!GitHub神秘组织3小时极速复刻Manus,手把手教你使用OpenManus搭建本
· C#/.NET/.NET Core优秀项目和框架2025年2月简报
点击右上角即可分享
微信分享提示