HDU 1081 (DP)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1081
To The Max
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 8920 Accepted Submission(s):
4312
Problem Description
Given a two-dimensional array of positive and negative
integers, a sub-rectangle is any contiguous sub-array of size 1 x 1 or greater
located within the whole array. The sum of a rectangle is the sum of all the
elements in that rectangle. In this problem the sub-rectangle with the largest
sum is referred to as the maximal sub-rectangle.
As an example, the maximal sub-rectangle of the array:
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
is in the lower left corner:
9 2
-4 1
-1 8
and has a sum of 15.
As an example, the maximal sub-rectangle of the array:
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
is in the lower left corner:
9 2
-4 1
-1 8
and has a sum of 15.
Input
The input consists of an N x N array of integers. The
input begins with a single positive integer N on a line by itself, indicating
the size of the square two-dimensional array. This is followed by N 2 integers
separated by whitespace (spaces and newlines). These are the N 2 integers of the
array, presented in row-major order. That is, all numbers in the first row, left
to right, then all numbers in the second row, left to right, etc. N may be as
large as 100. The numbers in the array will be in the range
[-127,127].
Output
Output the sum of the maximal sub-rectangle.
Sample Input
4
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1
8 0 -2
Sample Output
15
题意分析:二维矩阵压缩成一维矩阵,三个for循环实现:
for (int i=0; i<n; i++)
for (int j=i; j<n; j++) //注意这里的j=i;
for (int k=0; k<n; k++)
原理:首先把每一列的最大值求出来,二维就变成的一维,就变成了求最大数列和的问题了,但要注意每次更新。
1 #include <cstdio> 2 #include <cstring> 3 using namespace std; 4 5 int a[111][111],dp[111],n; 6 int sum,ans; 7 8 int main () 9 { 10 int i,j,k; 11 while (scanf ("%d",&n)==1) 12 { 13 for (i=0; i<n; i++) 14 for (j=0; j<n; j++) 15 scanf ("%d",&a[i][j]); 16 ans = -99999999; 17 for (i=0; i<n; i++) 18 { 19 memset(dp, 0, sizeof(dp));//每次更新dp清零 20 for (j=i; j<n; j++) 21 { 22 sum = -1;//同上 23 for (k=0; k<n; k++)//每列元素相加 24 { 25 dp[k] += a[j][k]; 26 } 27 for (k=0; k<n; k++)//找到和最大的那列 28 { 29 if (sum > 0) 30 sum += dp[k]; 31 else 32 sum = dp[k]; 33 if (sum > ans) 34 ans = sum; 35 } 36 } 37 } 38 printf ("%d\n",ans); 39 } 40 return 0; 41 }