G24 矩阵求逆 高斯约旦消元法
视频链接:G24 矩阵求逆 高斯约旦消元法_哔哩哔哩_bilibili
#include<iostream> #include<cstdio> #include<cmath> #define LL long long using namespace std; const int N=405,P=1e9+7; int n; LL a[N][N<<1]; LL quickpow(LL a, LL b){ LL ans = 1; while(b){ if(b & 1) ans = ans*a%P; a = a*a%P; b >>= 1; } return ans; } bool Gauss_Jordan(){ for(int i=1;i<=n;++i){ //枚举主元的行列 int r = i; for(int k=i; k<=n; ++k) //找非0行 if(a[k][i]) {r=k; break;} if(r!=i) swap(a[r],a[i]); //换行 if(!a[i][i]) return 0; int x=quickpow(a[i][i],P-2); //求逆元 for(int k=1; k<=n; ++k){ //对角化 if(k == i) continue; int t=a[k][i]*x%P; for(int j=i; j<=2*n; ++j) a[k][j]=((a[k][j]-t*a[i][j])%P+P)%P; } for(int j=1; j<=2*n; ++j) //除以主元 a[i][j]=(a[i][j]*x%P); } return 1; } int main(){ scanf("%d",&n); for(int i=1; i<=n; ++i) for(int j=1; j<=n; ++j) scanf("%lld",&a[i][j]),a[i][i+n]=1; if(Gauss_Jordan()) for(int i=1; i<=n; ++i){ for(int j=n+1; j<=2*n; ++j) printf("%lld ",a[i][j]); puts(""); } else puts("No Solution"); return 0; }