执行分布式检索

一个 CRUD 操作只对单个文档进行处理,文档的唯一性由 _index, _type, 和 routing values(通常默认是该文档的 _id )的组合来确定。 这表示我们确切的知道集群中哪个分片含有此文档。

搜索需要一种更加复杂的执行模型因为我们不知道查询会命中哪些文档: 这些文档有可能在集群的任何分片上。 一个搜索请求必须询问我们关注的索引(index or indices)的所有分片的某个副本来确定它们是否含有任何匹配的文档。

但是找到所有的匹配文档仅仅完成事情的一半。 在 search 接口返回一个 page 结果之前,多分片中的结果必须组合成单个排序列表。 为此,搜索被执行成一个两阶段过程,我们称之为 query then fetch

查询阶段

初始查询阶段 时, 查询会广播到索引中每一个分片拷贝(主分片或者副本分片)。 每个分片在本地执行搜索并构建一个匹配文档的 优先队列
在这里插入图片描述
这个查询阶段的过程如下图所示:
在这里插入图片描述
查询阶段包含以下三个步骤:

  1. 客户端发送一个 search 请求到Node 3Node 3 会创建一个大小为 from + size 的空优先队列。
    2.Node 3将查询请求转发到索引的每个主分片或副本分片中。每个分片在本地执行查询并添加结果到大小为 from + size 的本地有序优先队列中。
  2. 每个分片返回各自优先队列中所有文档的 ID 和排序值给协调节点,也就是 Node 3 ,它合并这些值到自己的优先队列中来产生一个全局排序后的结果列表。

当一个搜索请求被发送到某个节点时,这个节点就变成了协调节点。 这个节点的任务是广播查询请求到所有相关分片并将它们的响应整合成全局排序后的结果集合,这个结果集合会返回给客户端。

第一步是广播请求到索引中每一个节点的分片拷贝。就像 document GET requests 所描述的, 查询请求可以被某个主分片或某个副本分片处理, 这就是为什么更多的副本(当结合更多的硬件)能够增加搜索吞吐率。 协调节点将在之后的请求中轮询所有的分片拷贝来分摊负载。

每个分片在本地执行查询请求并且创建一个长度为 from + size 的优先队列—也就是说,每个分片创建的结果集足够大,均可以满足全局的搜索请求。 分片返回一个轻量级的结果列表到协调节点,它仅包含文档 ID 集合以及任何排序需要用到的值,例如 _score 。

协调节点将这些分片级的结果合并到自己的有序优先队列里,它代表了全局排序结果集合。至此查询过程结束。

一个索引可以由一个或几个主分片组成, 所以一个针对单个索引的搜索请求需要能够把来
自多个分片的结果组合起来。 针对 multiple 或者 all 索引的搜索工作方式也是完全一致的
—​仅仅是包含了更多的分片而已。

取回阶段

查询阶段标识哪些文档满足搜索请求,但是我们仍然需要取回这些文档。这是取回阶段的任务, 正如下图所示:
在这里插入图片描述
分布式阶段由以下步骤构成:

  1. 协调节点辨别出哪些文档需要被取回并向相关的分片提交多个 GET 请求。
  2. 每个分片加载并 丰富 文档,如果有需要的话,接着返回文档给协调节点。
  3. 一旦所有的文档都被取回了,协调节点返回结果给客户端。

协调节点首先决定哪些文档 确实 需要被取回。例如,如果我们的查询指定了 { "from": 90, "size": 10 },最初的90个结果会被丢弃,只有从第91个开始的10个结果需要被取回。这些文档可能来自和最初搜索请求有关的一个、多个甚至全部分片。

协调节点给持有相关文档的每个分片创建一个 multi-get request ,并发送请求给同样处理查询阶段的分片副本。

分片加载文档体——_source字段—​如果有需要,用元数据和search snippet highlighting 丰富结果文档。 一旦协调节点接收到所有的结果文档,它就组装这些结果为单个响应返回给客户端。
在这里插入图片描述
参考:官网教程 https://www.elastic.co/guide/cn/elasticsearch/guide/current/_query_phase.html

posted @ 2022-10-30 23:22  寒小韩  阅读(23)  评论(0编辑  收藏  举报