映射和分析
精确值 VS 全文
Elasticsearch 中的数据可以概括的分为两类:精确值和全文。
精确值 如它们听起来那样精确。例如日期或者用户 ID,但字符串也可以表示精确值,例如用户名或邮箱地址。对于精确值来讲,Foo 和 foo 是不同的,2014 和 2014-09-15 也是不同的。
另一方面,全文 是指文本数据(通常以人类容易识别的语言书写),例如一个推文的内容或一封邮件的内容。
精确值很容易查询。结果是二进制的:要么匹配查询,要么不匹配。这种查询很容易用 SQL 表示:
WHERE name = "John Smith"
AND user_id = 2
AND date > "2014-09-15"
查询全文数据要微妙的多。我们问的不只是“这个文档匹配查询吗”,而是“该文档匹配查询的程度有多大?”换句话说,该文档与给定查询的相关性如何?
我们很少对全文类型的域做精确匹配。相反,我们希望在文本类型的域中搜索。不仅如此,我们还希望搜索能够理解我们的 意图 :
- 搜索
UK
,会返回包含United Kindom
的文档。 - 搜索
jump
,会匹配jumped
,jumps
,jumping
,甚至是leap
。 - 搜索
johnny walker
会匹配Johnnie Walker
,johnnie depp
应该匹配Johnny Depp
。 fox news hunting
应该返回福克斯新闻(Foxs News
)中关于狩猎的故事,同时,fox hunting news
应该返回关于猎狐的故事。
为了促进这类在全文域中的查询,Elasticsearch 首先 分析 文档,之后根据结果创建 倒排索引 。
倒排索引
Elasticsearch 使用一种称为 倒排索引 的结构,它适用于快速的全文搜索。一个倒排索引由文档中所有不重复词的列表构成,对于其中每个词,有一个包含它的文档列表。
例如,假设我们有两个文档,每个文档的 content 域包含如下内容:
The quick brown fox jumped over the lazy dog
Quick brown foxes leap over lazy dogs in summer
为了创建倒排索引,我们首先将每个文档的 content 域拆分成单独的 词(我们称它为 term 或 tokens ),创建一个包含所有不重复词条的排序列表,然后列出每个词条出现在哪个文档。结果如下所示:
现在,如果我们想搜索 quick brown
,我们只需要查找包含每个词条的文档:
两个文档都匹配,但是第一个文档比第二个匹配度更高。如果我们使用仅计算匹配词条数量的简单 相似性算法 ,那么,我们可以说,对于我们查询的相关性来讲,第一个文档比第二个文档更佳。
但是,我们目前的倒排索引有一些问题:
Quick
和quick
以独立的词条出现,然而用户可能认为它们是相同的词。fox
和foxes
非常相似, 就像dog
和dogs
;他们有相同的词根。jumped
和leap
, 尽管没有相同的词根,但他们的意思很相近。他们是同义词。
使用前面的索引搜索 +Quick +fox
不会得到任何匹配文档。(记住,+ 前缀表明这个词必须存在。)只有同时出现 Quick 和 fox 的文档才满足这个查询条件,但是第一个文档包含 quick fox
,第二个文档包含 Quick foxes
。
我们的用户可以合理的期望两个文档与查询匹配。我们可以做的更好。
如果我们将词条规范为标准模式,那么我们可以找到与用户搜索的词条不完全一致,但具有足够相关性的文档。例如:
Quick
可以小写化为quick
。foxes
可以 词干提取 ——变为词根的格式为fox
。类似的,dogs
可以为提取为dog
。jumped
和leap
是同义词,可以索引为相同的单词jump
。
现在索引看上去像这样:
这还远远不够。我们搜索 +Quick +fox
仍然 会失败,因为在我们的索引中,已经没有 Quick
了。但是,如果我们对搜索的字符串使用与 content 域相同的标准化规则,会变成查询 +quick +fox
,这样两个文档都会匹配!
这非常重要。你只能搜索在索引中出现的词条,所以索引文本和查询字符串必须标准化为相同的格式。
分词和标准化的过程称为 分析 。
分析与分析器
分析
分析 包含下面的过程:
- 首先,将一块文本分成适合于倒排索引的独立的 词条 ,
- 之后,将这些词条统一化为标准格式以提高它们的“可搜索性”,或者 recall
分析器
分析器执行上面的工作。 分析器 实际上是将三个功能封装到了一个包里:
字符过滤器
首先,字符串按顺序通过每个 字符过滤器 。他们的任务是在分词前整理字符串。一个字符过滤器可以用来去掉HTML,或者将 & 转化成 and。
分词器
其次,字符串被 分词器 分为单个的词条。一个简单的分词器遇到空格和标点的时候,可能会将文本拆分成词条。
Token 过滤器
最后,词条按顺序通过每个 token 过滤器 。这个过程可能会改变词条(例如,小写化 Quick ),删除词条(例如, 像 a, and, the 等无用词),或者增加词条(例如,像 jump 和 leap 这种同义词)。
Elasticsearch提供了开箱即用的字符过滤器、分词器和token 过滤器。 这些可以组合起来形成自定义的分析器以用于不同的目的。
内置分析器
但是, Elasticsearch还附带了可以直接使用的预包装的分析器。接下来我们会列出最重要的分析器。为了证明它们的差异,我们看看每个分析器会从下面的字符串得到哪些词条:
"Set the shape to semi-transparent by calling set_trans(5)"
标准分析器
标准分析器是Elasticsearch默认使用的分析器。它是分析各种语言文本最常用的选择。它根据 Unicode 联盟 定义的 单词边界 划分文本。删除绝大部分标点。最后,将词条小写。它会产生
set, the, shape, to, semi, transparent, by, calling, set_trans, 5
简单分析器
简单分析器在任何不是字母的地方分隔文本,将词条小写。它会产生
set, the, shape, to, semi, transparent, by, calling, set, trans
空格分析器
空格分析器在空格的地方划分文本。它会产生
Set, the, shape, to, semi-transparent, by, calling, set_trans(5)
语言分析器
特定语言分析器可用于 很多语言。它们可以考虑指定语言的特点。例如, 英语 分析器附带了一组英语无用词(常用单词,例如and
或者 the
,它们对相关性没有多少影响),它们会被删除。 由于理解英语语法的规则,这个分词器可以提取英语单词的 词干 。
英语 分词器会产生下面的词条:
set, shape, semi, transpar, call, set_tran, 5
注意看 transparent
、 calling
和set_trans
已经变为词根格式。
什么时候使用分析器
当我们 索引 一个文档,它的全文域被分析成词条以用来创建倒排索引。 但是,当我们在全文域 搜索 的时候,我们需要将查询字符串通过 相同的分析过程 ,以保证我们搜索的词条格式与索引中的词条格式一致。
全文查询,理解每个域是如何定义的,因此它们可以做正确的事:
当你查询一个 全文 域
时, 会对查询字符串应用相同的分析器,以产生正确的搜索词条列表。
当你查询一个 精确值 域
时,不会分析查询字符串,而是搜索你指定的精确值。
现在你可以理解在 开始章节 的查询为什么返回那样的结果:
date
域包含一个精确值:单独的词条 2014-09-15
。
_all
域是一个全文域,所以分词进程将日期转化为三个词条: 2014
, 09
, 和 15
。
当我们在 _all
域查询 2014
,它匹配所有的12条推文,因为它们都含有 2014
:
GET /_search?q=2014 # 12 results
当我们在 _all
域查询 2014-09-15
,它首先分析查询字符串,产生匹配 2014
, 09
, 或 15
中 任意 词条的查询。这也会匹配所有12条推文,因为它们都含有 2014
:
GET /_search?q=2014-09-15 # 12 results !
当我们在 date
域查询 2014-09-15
,它寻找 精确 日期,只找到一个推文:
GET /_search?q=date:2014-09-15 # 1 result
当我们在 date
域查询 2014
,它找不到任何文档,因为没有文档含有这个精确日志:
GET /_search?q=date:2014 # 0 results
测试分析器
有些时候很难理解分词的过程和实际被存储到索引中的词条,特别是你刚接触Elasticsearch。为了理解发生了什么,你可以使用 analyze API 来看文本是如何被分析的。在消息体里,指定分析器和要分析的文本:
GET /_analyze
{
"analyzer": "standard",
"text": "Text to analyze"
}
结果中每个元素代表一个单独的词条:
{
"tokens": [
{
"token": "text",
"start_offset": 0,
"end_offset": 4,
"type": "<ALPHANUM>",
"position": 1
},
{
"token": "to",
"start_offset": 5,
"end_offset": 7,
"type": "<ALPHANUM>",
"position": 2
},
{
"token": "analyze",
"start_offset": 8,
"end_offset": 15,
"type": "<ALPHANUM>",
"position": 3
}
]
}
token
是实际存储到索引中的词条。position
指明词条在原始文本中出现的位置。start_offset
和end_offset
指明字符在原始字符串中的位置。
指定分析器
当Elasticsearch在你的文档中检测到一个新的字符串域,它会自动设置其为一个全文 字符串 域,使用 标准 分析器对它进行分析。
你不希望总是这样。可能你想使用一个不同的分析器,适用于你的数据使用的语言。有时候你想要一个字符串域就是一个字符串域—不使用分析,直接索引你传入的精确值,例如用户ID或者一个内部的状态域或标签。
要做到这一点,我们必须手动指定这些域的映射。
映射
为了能够将时间域视为时间,数字域视为数字,字符串域视为全文或精确值字符串, Elasticsearch 需要知道每个域中数据的类型。这个信息包含在映射中。
索引中每个文档都有 类型 。每种类型都有它自己的 映射 ,或者 模式定义 。映射定义了类型中的域,每个域的数据类型,以及Elasticsearch如何处理这些域。映射也用于配置与类型有关的元数据。
核心简单域类型
Elasticsearch 支持如下简单域类型:
- 字符串:
string
- 整数 :
byte
,short
,integer
,long
- 浮点数:
float
,double
- 布尔型:
boolean
- 日期:
date
当你索引一个包含新域的文档(之前未曾出现), Elasticsearch 会使用 动态映射 ,通过JSON中基本数据类型,尝试猜测域类型,使用如下规则:
这意味着如果你通过引号( “123” )索引一个数字,它会被映射为 string 类型,而不是 long 。但是,如果这个域已经映射为 long ,那么 Elasticsearch 会尝试将这个字符串转化为 long ,如果无法转化,则抛出一个异常。
查看映射
通过 /_mapping
,我们可以查看 Elasticsearch 在一个或多个索引中的一个或多个类型的映射。获取得索引 gb
中类型 tweet
的映射:
GET /gb/_mapping/tweet
Elasticsearch 根据我们索引的文档,为域(称为 属性 )动态生成的映射。
{
"gb": {
"mappings": {
"tweet": {
"properties": {
"date": {
"type": "date",
"format": "strict_date_optional_time||epoch_millis"
},
"name": {
"type": "string"
},
"tweet": {
"type": "string"
},
"user_id": {
"type": "long"
}
}
}
}
}
}
自定义域映射
尽管在很多情况下基本域数据类型已经够用,但你经常需要为单独域自定义映射,特别是字符串域。
自定义映射允许你执行下面的操作:
- 全文字符串域和精确值字符串域的区别
- 使用特定语言分析器
- 优化域以适应部分匹配
- 指定自定义数据格式
- 还有更多
type
域最重要的属性是 type
。对于不是 string
的域,你一般只需要设置 type
:
{
"number_of_clicks": {
"type": "integer"
}
}
默认,string
类型域会被认为包含全文。就是说,它们的值在索引前,会通过一个分析器,针对于这个域的查询在搜索前也会经过一个分析器。
string
域映射的两个最重要属性是 index
和 analyzer
。
index
index 属性控制怎样索引字符串。它可以是下面三个值:
(1)analyzed
首先分析字符串,然后索引它。换句话说,以全文索引这个域。
(2)not_analyzed
索引这个域,所以它能够被搜索,但索引的是精确值。不会对它进行分析。
(3)no
不索引这个域。这个域不会被搜索到。
string
域 index
属性默认是 analyzed
。如果我们想映射这个字段为一个精确值,我们需要设置它为 not_analyzed
:
{
"tag": {
"type": "string",
"index": "not_analyzed"
}
}
其他简单类型(例如 long
, double
, date
等)也接受 index
参数,但有意义的值只有 no
和 not_analyzed
, 因为它们永远不会被分析。
analyzer
对于 analyzed
字符串域,用 analyzer
属性指定在搜索和索引时使用的分析器。默认, Elasticsearch 使用 standard 分析器, 但你可以指定一个内置的分析器替代它,例如 whitespace
、 simple
和english
:
{
"tweet": {
"type": "string",
"analyzer": "english"
}
}
更新映射
当你首次创建一个索引的时候,可以指定类型的映射。你也可以使用 /_mapping
为新类型(或者为存在的类型更新映射)增加映射。
尽管你可以 增加 一个存在的映射,你不能 修改 存在的域映射。如果一个域的映射已经存在,那么该域的数据可能已经被索引。如果你意图修改这个域的映射,索引的数据可能会出错,不能被正常的搜索。
我们可以更新一个映射来添加一个新域,但不能将一个存在的域从 analyzed
改为 not_analyzed
。
为了描述指定映射的两种方式,我们先删除 gd 索引:
DELETE /gb
然后创建一个新索引,指定tweet
域使用 english 分析器
:
PUT /gb
{
"mappings": {
"tweet" : {
"properties" : {
"tweet" : {
"type" : "string",
"analyzer": "english"
},
"date" : {
"type" : "date"
},
"name" : {
"type" : "string"
},
"user_id" : {
"type" : "long"
}
}
}
}
}
通过消息体中指定的 mappings
创建了索引。
稍后,我们决定在 tweet
映射增加一个新的名为 tag
的 not_analyzed
的文本域,使用 _mapping
:
PUT /gb/_mapping/tweet
{
"properties" : {
"tag" : {
"type" : "string",
"index": "not_analyzed"
}
}
}
注意,我们不需要再次列出所有已存在的域,因为无论如何我们都无法改变它们。新域已经被合并到存在的映射中。
测试映射
你可以使用 analyze API
测试字符串域的映射。比较下面两个请求的输出:
GET /gb/_analyze
{
"field": "tweet",
"text": "Black-cats"
}
GET /gb/_analyze
{
"field": "tag",
"text": "Black-cats"
}
-
消息体里面传输我们想要分析的文本。
-
tweet
域产生两个词条black
和cat
,tag
域产生单独的词条Black-cats
。换句话说,我们的映射正常工作。