序列计数
Time Limit: 4500/4000 MS (Java/Others) Memory Limit: 262144/262144 K (Java/Others)
Total Submission(s): 348 Accepted Submission(s): 117
Problem Description
度度熊了解到,1,2,…,n 的排列一共有 n!=n×(n−1)×⋯×1 个。现在度度熊从所有排列中等概率随机选出一个排列 p1,p2,…,pn,你需要对 k=1,2,3,…,n 分别求出长度为 k 的上升子序列个数,也就是计算满足 1≤a1 < a2 < … < ak ≤n 且 pa1 <pa2< … < pak 的 k 元组 (a1,a2,…,ak) 的个数。
由于结果可能很大,同时也是为了 ruin the legend, 你只需要输出结果对 1000000007(=109+7) 取模后的值。
由于结果可能很大,同时也是为了 ruin the legend, 你只需要输出结果对 1000000007(=109+7) 取模后的值。
Input
第一行包含一个整数 T,表示有 T 组测试数据。
接下来依次描述 T 组测试数据。对于每组测试数据:
第一行包含一个整数 n,表示排列的长度。
第二行包含 n 个整数 p1,p2, …, pn,表示排列的 n 个数。
保证 1≤T≤100,1≤n≤104,T 组测试数据的 n 之和 ≤105,p1,p2,…,pn 是 1,2,…,n 的一个排列。
除了样例,你可以认为给定的排列是从所有 1,2,…,n 的排列中等概率随机选出的。
接下来依次描述 T 组测试数据。对于每组测试数据:
第一行包含一个整数 n,表示排列的长度。
第二行包含 n 个整数 p1,p2, …, pn,表示排列的 n 个数。
保证 1≤T≤100,1≤n≤104,T 组测试数据的 n 之和 ≤105,p1,p2,…,pn 是 1,2,…,n 的一个排列。
除了样例,你可以认为给定的排列是从所有 1,2,…,n 的排列中等概率随机选出的。
Output
对于每组测试数据,输出一行信息 "Case #x: c1 c2 ... cn"(不含引号),其中 x 表示这是第 x 组测试数据,ci 表示长度为 i 的上升子序列个数对 1000000007(=109+7) 取模后的值,相邻的两个数中间用一个空格隔开,行末不要有多余空格。
Sample Input
2
4
1 2 3 4
4
1 3 2 4
Sample Output
Case #1: 4 6 4 1
Case #2: 4 5 2 0
Source
Recommend
chendu
析:当时这个题目,我的第一感觉就是 LIS 加组合数,然后就是枚举长度为 i 的上升子序列有多少个,然后可以再枚举每个数,计算以第 j 个数为结束的上升子序列有多少个,这个是可以递推的,然后计算前面有多少个数比第 j 个数小,并且长度为 i - 1 的上升子序列有多少个,这个复杂度是O(n^3),怎么可能过呢,但是题目说了,这个排序是随机给的,虽然我不知道 LIS 最长是多少,但是肯定不会很大,因为我们平时做的题目时间要算最坏的是因为,后台基本是会有最坏的数据的,毕竟出题人要卡你时间么,这个题目说了是随机的,所以这个时间复杂度可能是在O(n^(5/2)) 左右吧(猜的),这样还是过不了的,但是还可以进行优化,在求长度为 i - 1 的上升子序列有多少个的时候,可以使用树状数组来进行优化,当然其他数据结构也是可以啦,现在复杂度应该就是O(n(3/2)*log(n)),最坏的话 1e4 * 1e2 * 14 左右,大约 1e7 ,时间上差不多。交上去一遍就过了。。。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #include <sstream> #include <list> #include <assert.h> #include <bitset> #include <numeric> #define debug() puts("++++") #define gcd(a, b) __gcd(a, b) #define lson l,m,rt<<1 #define rson m+1,r,rt<<1|1 #define fi first #define se second #define pb push_back #define sqr(x) ((x)*(x)) #define ms(a,b) memset(a, b, sizeof a) #define sz size() #define be begin() #define ed end() #define pu push_up #define pd push_down #define cl clear() #define lowbit(x) -x&x //#define all 1,n,1 #define FOR(i,n,x) for(int i = (x); i < (n); ++i) #define freopenr freopen("in.in", "r", stdin) #define freopenw freopen("out.out", "w", stdout) using namespace std; typedef long long LL; typedef unsigned long long ULL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const LL LNF = 1e17; const double inf = 1e20; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 1e4 + 20; const int maxm = 1e6 + 10; const int mod = 1000000007; const int dr[] = {-1, 1, 0, 0, 1, 1, -1, -1}; const int dc[] = {0, 0, 1, -1, 1, -1, 1, -1}; const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline bool is_in(int r, int c) { return r >= 0 && r < n && c >= 0 && c < m; } inline int readInt(){ int x; scanf("%d", &x); return x; } int sum[2][maxn]; void add(int i, int x, LL c){ while(x <= n){ sum[i][x] += c; if(sum[i][x] >= mod) sum[i][x] -= mod; x += lowbit(x); } } int query(int i, int x){ int ans = 0; while(x){ ans += sum[i][x]; if(ans >= mod) ans -= mod; x -= lowbit(x); } return ans; } int dp[maxn], a[maxn]; int main(){ int T; cin >> T; for(int kase = 1; kase <= T; ++kase){ scanf("%d", &n); for(int i = 1; i <= n; ++i){ scanf("%d", a + i); dp[i] = 1; } printf("Case #%d:", kase); int cur = 0; printf(" %d", n); cur = 1; for(int i = 2; i <= n; ++i, cur ^= 1){ ms(sum[cur^1], 0); int ans = 0; for(int j = 1; j <= n; ++j){ int tmp = query(cur^1, a[j]); add(cur^1, a[j], dp[j]); dp[j] = tmp; ans += tmp; if(ans >= mod) ans -= mod; } if(ans == 0){ for(int j = i; j <= n; ++j) printf(" 0"); break; } printf(" %d", ans); } printf("\n"); } return 0; }