链接:https://www.nowcoder.com/acm/contest/133/D
来源:牛客网
题目描述
Applese打开了m个QQ群,向群友们发出了组队的邀请。作为网红选手,Applese得到了n位选手的反馈,每位选手只会在一个群给Applese反馈
现在,Applese要挑选其中的k名选手组队比赛,为了维持和各个群的良好关系,每个群中都应有至少一名选手成为Applese的队友(数据保证每个群都有选手给Applese反馈)
Applese想知道,他有多少种挑选队友的方案
现在,Applese要挑选其中的k名选手组队比赛,为了维持和各个群的良好关系,每个群中都应有至少一名选手成为Applese的队友(数据保证每个群都有选手给Applese反馈)
Applese想知道,他有多少种挑选队友的方案
输入描述:
输入包括两行
第一行包括三个数n, m, k,表示共有n位选手,m个群,需要有k名选手被选择
第二行包括m个数,第i个数表示第i个群有si个选手
n ≤ 100000, m ≤ k ≤ n
输出描述:
输出包括一行
第一行输出方案数
由于输出可能比较大,你只需要输出在模998244353意义下的答案
示例1
输入
5 3 4 1 2 2
输出
4
析:由于每个群都要选人,而且每个人还不同,从一个 n 个人的群里选 m 个人,方法数是 C(n, m)。但是要考虑多个群就是一个生成函数的问题了,答案就是[(x+1)^s1-1] * [(x+1)^s2-1] * ... * [(x+1)^sm-1],该多项式的第 k +1 项的系数,也就是 x ^k 的系数。最多可能有 n 个多项式相乘,可能有 n 项,那么如果使用普通的 FFT 算法在时间上是过不去了,必须要使用分治来做进一步优化。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #include <sstream> #include <list> #include <assert.h> #include <bitset> #include <numeric> #define debug() puts("++++") #define gcd(a, b) __gcd(a, b) #define lson l,m,rt<<1 #define rson m+1,r,rt<<1|1 #define fi first #define se second #define pb push_back #define sqr(x) ((x)*(x)) #define ms(a,b) memset(a, b, sizeof a) #define sz size() #define be begin() #define ed end() #define pu push_up #define pd push_down #define cl clear() #define lowbit(x) -x&x //#define all 1,n,1 #define FOR(i,n,x) for(int i = (x); i < (n); ++i) #define freopenr freopen("in.in", "r", stdin) #define freopenw freopen("out.out", "w", stdout) using namespace std; typedef long long LL; typedef unsigned long long ULL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const LL LNF = 1e17; const double inf = 1e20; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 4e5 + 100; const int maxm = 1e6 + 10; const LL mod = 998244353LL; const int dr[] = {-1, 1, 0, 0, 1, 1, -1, -1}; const int dc[] = {0, 0, 1, -1, 1, -1, 1, -1}; const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline bool is_in(int r, int c) { return r >= 0 && r < n && c >= 0 && c < m; } inline int readInt(){ int x; scanf("%d", &x); return x; } const int g = 3; LL qp[40], fact[maxn>>2], inv[maxn>>2]; LL fast_pow(LL a, LL n){ LL res = 1; while(n){ if(n&1) res = res * a % mod; n >>= 1; a = a * a % mod; } return res; } void init(){ for(int i = 0; i < 30; ++i) qp[i] = fast_pow(g, (mod-1)/(1<<i)); fact[0] = fact[1] = inv[0] = inv[1] = 1; for(int i = 2; i <= n; ++i) fact[i] = fact[i-1] * i % mod; inv[n] = fast_pow(fact[n], mod - 2); for(int i = n-1; i > 1; --i) inv[i] = inv[i+1] * (i+1) % mod; } void rader(vector<LL> &F, int len){ int j = len >> 1; for(int i = 1; i < len-1; ++i){ if(i < j) swap(F[i], F[j]); int k = len >> 1; while(j >= k){ j ^= k; k >>= 1; } if(j < k) j |= k; } } void NTT(vector<LL> &F, int len, int t){ int id = 0; rader(F, len); for(int h = 2; h <= len; h <<= 1){ ++id; for(int j = 0; j < len; j += h){ LL E = 1; for(int k = j; k < j+h/2; ++k){ LL u = F[k]; LL v = E * F[k+h/2] % mod; F[k] = (u + v) % mod; F[k+h/2] = (u - v + mod) % mod; E = E * qp[id] % mod; } } } if(t == -1){ for(int i = 1; i < (len>>1); ++i) swap(F[i], F[len-i]); LL inv = fast_pow(len, mod - 2); for(int i = 0; i < len; ++i) F[i] = F[i] * inv % mod; } } inline LL C(int n, int m){ return fact[n] * inv[m] % mod * inv[n-m] % mod; } vector<LL> solve(int len1, int len2, vector<LL> &A, vector<LL> &B){ int len = 1; while(len < (len1<<1) || len < (len2<<1)) len <<= 1; A.resize(len); B.resize(len); NTT(A, len, 1); NTT(B, len, 1); for(int i = 0; i < len; ++i) A[i] = A[i] * B[i] % mod; NTT(A, len, -1); while(len > 1 && A[len-1] == 0) --len; A.resize(len); return A; } vector<LL> sum[maxn]; vector<vector<LL> > all; void dfs(int l, int r, int rt){ if(l == r){ sum[rt] = all[l]; return ; } int m = l + r >> 1; dfs(lson); dfs(rson); sum[rt] = solve(sum[rt<<1].sz, sum[rt<<1|1].sz, sum[rt<<1], sum[rt<<1|1]); } int main(){ int k; scanf("%d %d %d", &n, &m, &k); init(); all.pb(vector<LL>()); for(int i = 0; i < m; ++i){ int x; scanf("%d", &x); vector<LL> v; v.pb(0); for(int j = 1; j <= x; ++j) v.pb(C(x, j)); all.pb(v); } dfs(1, m, 1); printf("%lld\n", sum[1][k]); return 0; }