题意:给定 n 条边,问随机选出 3 条边,能组成三角形的概率是多少。
析:答案很明显就是 能组成三角形的种数 / (C(n, 3))。现在的问题是怎么求能组成三角形的种数。
这个博客说的非常清楚了。。。
https://www.cnblogs.com/kuangbin/archive/2013/07/24/3210565.html
总体来说就是把边长转换成下标,然后再根据组合数,就可以知道选出两条边,长度为 i 有多少种情况,然后再减去重复的,最后再枚举斜边,就可以解决这个问题了。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #include <sstream> #include <list> #include <assert.h> #include <bitset> #include <numeric> #define debug() puts("++++") #define gcd(a, b) __gcd(a, b) #define lson l,m,rt<<1 #define rson m+1,r,rt<<1|1 #define fi first #define se second #define pb push_back #define sqr(x) ((x)*(x)) #define ms(a,b) memset(a, b, sizeof a) #define sz size() #define be begin() #define ed end() #define pu push_up #define pd push_down #define cl clear() #define lowbit(x) -x&x //#define all 1,n,1 #define FOR(i,n,x) for(int i = (x); i < (n); ++i) #define freopenr freopen("in.in", "r", stdin) #define freopenw freopen("out.out", "w", stdout) using namespace std; typedef long long LL; typedef unsigned long long ULL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const LL LNF = 1e17; const double inf = 1e20; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 400000 + 100; const int maxm = 1e6 + 10; const int mod = 1000000007; const int dr[] = {-1, 1, 0, 0, 1, 1, -1, -1}; const int dc[] = {0, 0, 1, -1, 1, -1, 1, -1}; const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline bool is_in(int r, int c) { return r >= 0 && r < n && c >= 0 && c < m; } inline int readInt(){ int x; scanf("%d", &x); return x; } struct Complex{ double x, y; Complex(double x_ = 0., double y_ = 0.) : x(x_), y(y_) {} Complex operator - (const Complex &c) const{ return Complex(x - c.x, y - c.y); } Complex operator + (const Complex &c) const{ return Complex(x + c.x, y + c.y); } Complex operator * (const Complex &c) const{ return Complex(x * c.x - y * c.y, x * c.y + c.x * y); } }; void change(Complex *y, int len){ for(int i = 1, j = (len>>1); i < len-1; ++i){ if(i < j) swap(y[i], y[j]); int k = len>>1; while(j >= k){ j -= k; k >>= 1; } if(j < k) j += k; } } void fft(Complex *y, int len, int on){ change(y, len); for(int h = 2; h <= len; h <<= 1){ Complex wn(cos(-on*2*PI/h), sin(-on*2*PI/h)); for(int j = 0; j < len; j += h){ Complex w(1, 0); for(int k = j; k < j+h/2; ++k){ Complex u = y[k]; Complex t = w * y[k+h/2]; y[k] = u + t; y[k+h/2] = u - t; w = w * wn; } } } if(-1 == on) for(int i = 0; i < len; ++i) y[i].x /= len; } int a[maxn>>2]; Complex x[maxn]; LL sum[maxn], num[maxn]; int main(){ int T; cin >> T; while(T--){ scanf("%d", &n); ms(num, 0); for(int i = 0; i < n; ++i) ++num[a[i]=readInt()]; sort(a, a + n); int mmax = a[n-1] + 1; int len = 1; while(len < (mmax<<1)) len <<= 1; for(int i = 0; i < mmax; ++i) x[i] = Complex(num[i], 0); for(int i = mmax; i < len; ++i) x[i] = Complex(); fft(x, len, 1); for(int i = 0; i < len; ++i) x[i] = x[i] * x[i]; fft(x, len, -1); for(int i = 0; i < len; ++i) num[i] = (LL)(x[i].x + 0.5); for(int i = 0; i < n; ++i) --num[a[i]<<1]; for(int i = 1; i <= len; ++i) sum[i] = sum[i-1] + num[i] / 2; LL ans = 0; for(int i = 0; i < n; ++i){ ans += sum[len] - sum[a[i]]; ans -= (LL)(n-i-1) * (n-i-2) / 2; // both are greater than a[i] ans -= (LL)(n-i-1) * i; // the one is greater than a[i] but the other is less; ans -= n - 1; // the one of the branches is a[i] } LL de = (LL)n * (n-1) * (n-2) / 6; printf("%.7f\n", ans * 1. / de); } return 0; }