题意:给定 n,m,k,问你在 1 ~ n 的排列中,前 m 个恰好有 k 个不在自己位置的排列有多少个。
析:枚举 m+1 ~ n 中有多少个恰好在自己位置,这个是C(n-m, i),然后前面选出 k 个,是C(m, k),剩下 n - k - i 个是都不在自己位置,也就是错排 D[n-k-i],求一个和就Ok了。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #include <sstream> #include <list> #include <assert.h> #include <bitset> #include <numeric> #define debug() puts("++++") #define gcd(a, b) __gcd(a, b) #define lson l,m,rt<<1 #define rson m+1,r,rt<<1|1 #define fi first #define se second #define pb push_back #define sqr(x) ((x)*(x)) #define ms(a,b) memset(a, b, sizeof a) #define sz size() #define be begin() #define ed end() #define pu push_up #define pd push_down #define cl clear() #define lowbit(x) -x&x //#define aLL 1,n,1 #define FOR(i,n,x) for(int i = (x); i < (n); ++i) #define freopenr freopen("in.in", "r", stdin) #define freopenw freopen("out.out", "w", stdout) using namespace std; typedef long long LL; typedef unsigned long long ULL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const LL LNF = 1e17; const double inf = 1e20; const double PI = acos(-1.0); const double eps = 1e-6; const int maxn = 1000 + 10; const int maxm = 76543; const int mod = 1000000007; const int dr[] = {-1, 1, 0, 0, 1, 1, -1, -1}; const int dc[] = {0, 0, 1, -1, 1, -1, 1, -1}; const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline bool is_in(int r, int c) { return r >= 0 && r < n && c >= 0 && c < m; } inline int readInt(){ int x; scanf("%d", &x); return x; } int f[maxn], D[maxn], inv[maxn]; int fast_pow(int a, int n){ int res = 1; while(n){ if(n&1) res = (LL)res * a % mod; n >>= 1; a = (LL)a * a % mod; } return res; } int main(){ D[1] = 0; D[0] = D[2] = 1; f[0] = f[1] = 1; f[2] = 2; for(int i = 3; i <= 1000; ++i){ f[i] = (LL)f[i-1] * i % mod; D[i] = (LL)(i-1) * (D[i-1] + D[i-2]) % mod; } inv[1000] = fast_pow(f[1000], mod-2); for(int i = 999; i >= 0; --i) inv[i] = (LL)(i+1) * inv[i+1] % mod; int T, k; cin >> T; for(int kase = 1; kase <= T; ++kase){ scanf("%d %d %d", &n, &m, &k); int ans = 0; int cmk = (LL)f[m] * inv[k] % mod * inv[m-k] % mod; for(int i = 0; i <= n-m; ++i) ans = (ans + (LL)cmk * f[n-m] % mod * inv[i] % mod * inv[n-m-i] % mod * D[n-k-i] % mod) % mod; printf("Case %d: %d\n", kase, ans); } return 0; }