题意:给定 x,n,r,满足 r2 ≡ x mod(n) ,求在 0 ~ n 内满足 rr2 ≡ x mod(n) 的所有的 rr。
析:很明显直接是肯定不行了,复杂度太高了。
r2 ≡ x mod(n) (1)
rr2 ≡ x mod(n) (2)
用 (2)- (1)得到
rr2 - r2 ≡ 0 mod (n)
(rr + r)*(rr - r) ≡ 0 mod (n),
可以得到
(rr + r)*(rr - r) = k * n。
假设 n = a * b,
那么 可以知道 (rr + r) % a == 0 && (rr - r) % b == 0 || (rr + r) % b == 0 && (rr - r) % a == 0,
也就是
rr + r = k1 * a (3)
rr - r = k2 * b (4)
(3)-(4)得
k1 * a + k2 * b = 2 * r,
这是一个方程,r 是已知的,然后 a 和 b,可以通过枚举 n 的因子得到,这样就可以解这方程,解出 k1 代入(3),就能得到 rr。
就解决了这个问题,还有这个可能会产生重复的解,所以可以用 set 。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #include <sstream> #include <list> #include <assert.h> #include <bitset> #include <numeric> #define debug() puts("++++") #define gcd(a, b) __gcd(a, b) #define lson l,m,rt<<1 #define rson m+1,r,rt<<1|1 #define fi first #define se second #define pb push_back #define sqr(x) ((x)*(x)) #define ms(a,b) memset(a, b, sizeof a) #define sz size() #define be begin() #define ed end() #define pu push_up #define pd push_down #define cl clear() #define lowbit(x) -x&x //#define aLL 1,n,1 #define FOR(i,n,x) for(int i = (x); i < (n); ++i) #define freopenr freopen("in.in", "r", stdin) #define freopenw freopen("out.out", "w", stdout) using namespace std; typedef long long LL; typedef unsigned long long ULL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const LL LNF = 1e17; const double inf = 1e20; const double PI = acos(-1.0); const double eps = 1e-6; const int maxn = 300 + 20; const int maxm = 76543; const int mod = 1e9 + 9; const int dr[] = {-1, 1, 0, 0, 1, 1, -1, -1}; const int dc[] = {0, 0, 1, -1, 1, -1, 1, -1}; const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline bool is_in(int r, int c) { return r >= 0 && r < n && c >= 0 && c < m; } inline int readInt(){ int x; scanf("%d", &x); return x; } void exgcd(int a, int b, LL &d, LL &x, LL &y){ if(!b){ d = a; x = 1; y = 0; } else{ exgcd(b, a%b, d, y, x); y -= (a/b) * x; } } int main(){ int x, r, kase = 0; while(scanf("%d %d %d", &x, &n, &r) == 3 && x + n + r){ vector<P> fact; int t = sqrt(n + 1.); for(int i = 1; i <= t; ++i) if(n % i == 0) fact.pb(P(i, n/i)), fact.pb(P(n/i, i)); set<int> sets; sets.insert(r); LL k1, k2, d; for(int i = 0; i < fact.sz; ++i){ int a = fact[i].fi; int b = fact[i].se; exgcd(a, b, d, k1, k2); if(2 * r % d) continue; int bb = abs(b / d); LL K1 = k1 * 2LL * r / d; k1 = (K1 % bb + bb) % bb; k2 = k1; while(1){ LL rr = k1 * a - r; if(rr >= 0){ if(rr >= n) break; sets.insert(rr); } k1 += bb; } while(1){ LL rr = k2 * a - r; if(rr <= n){ if(rr < 0) break; sets.insert(rr); } k2 -= bb; } } printf("Case %d:", ++kase); for(auto &it: sets) printf(" %d", it); printf("\n"); } return 0; }