题意:给定一个无向图,让你把所有点的和它的任意一个相邻点匹配起来,问你是方案是不是唯一,如果是,则输出方案。
析:贪心,很容易知道,如果一个点的度数是 1,那么它只有一个相邻点,这样的话,我们就可以把它和它相邻结点匹配,然后把与它相邻结点也相邻的点的度数都减 1,然后再找度数为 1 的点,直接找不到为止,如果最后所得到的匹配数是 n / 2 个,那么方案就是唯一,否则不是无解,就是多种方案。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #include <sstream> #include <list> #include <assert.h> #include <bitset> #include <numeric> #define debug() puts("++++") #define gcd(a, b) __gcd(a, b) #define lson l,m,rt<<1 #define rson m+1,r,rt<<1|1 #define fi first #define se second #define pb push_back #define sqr(x) ((x)*(x)) #define ms(a,b) memset(a, b, sizeof a) #define sz size() #define be begin() #define ed end() #define pu push_up #define pd push_down #define cl clear() #define lowbit(x) -x&x //#define all 1,n,1 #define FOR(i,n,x) for(int i = (x); i < (n); ++i) #define freopenr freopen("in.in", "r", stdin) #define freopenw freopen("out.out", "w", stdout) using namespace std; typedef long long LL; typedef unsigned long long ULL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const LL LNF = 1e17; const double inf = 1e20; const double PI = acos(-1.0); const double eps = 1e-10; const int maxn = 1000 + 5; const int maxm = 700 + 10; const LL mod = 1000000007; const int dr[] = {-1, 1, 0, 0, 1, 1, -1, -1}; const int dc[] = {0, 0, 1, -1, 1, -1, 1, -1}; const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline bool is_in(int r, int c) { return r >= 0 && r < n && c >= 0 && c < m; } inline int readInt(){ int x; scanf("%d", &x); return x; } vector<int> G[maxn]; int in[maxn]; vector<P> ans; bool vis[maxn]; int main(){ int T; cin >> T; while(T--){ scanf("%d %d", &n, &m); for(int i = 1; i <= n; ++i) G[i].cl; ms(in, 0); for(int i = 0; i < m; ++i){ int a, b; scanf("%d %d", &a, &b); G[a].pb(b); G[b].pb(a); ++in[a]; ++in[b]; } ans.cl; ms(vis, 0); while(ans.sz != n / 2){ bool ok = false; for(int i = 1; i <= n; ++i) if(!vis[i] && in[i] == 1){ ok = true; vis[i] = 1; --in[i]; for(int j = 0; j < G[i].sz; ++j){ int v = G[i][j]; if(!vis[v]){ ans.pb(P(min(i, v), max(i, v))); vis[v] = 1; for(int k = 0; k < G[v].sz; ++k) --in[G[v][k]]; break; } } } if(!ok) break; } if(ans.sz != n/2) puts("NO"); else{ puts("YES"); sort(ans.be, ans.ed); for(auto &it : ans) printf("%d %d\n", it.fi, it.se); } } return 0; }