题意:有n个仓库,m个管理员,每个管理员有一个能力值P,每个仓库只能由一个管理员看管,但是每个管理员可以看管k个仓库(但是这个仓库分配到的安全值只有p/k,k=0,1,...),雇用的管理员的工资即为他们的能力值p和,问,使每个仓库的安全值最高的前提下,使的工资总和最小。
析:首先使用二分安全值,然后使用DP来判断是不是能够达到这个安全值,这个DP就是一个01背包,dp[i] 表示看管 i 个仓库的最少费用多少,dp[j] = min{dp[j], d[j-x] + cost[i]}。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #include <sstream> #include <list> #include <assert.h> #include <bitset> #define debug() puts("++++"); #define gcd(a, b) __gcd(a, b) #define lson l,m,rt<<1 #define rson m+1,r,rt<<1|1 #define fi first #define se second #define pb push_back #define sqr(x) ((x)*(x)) #define ms(a,b) memset(a, b, sizeof a) //#define sz size() #define pu push_up #define pd push_down #define cl clear() #define all 1,n,1 #define FOR(x,n) for(int i = (x); i < (n); ++i) #define freopenr freopen("in.txt", "r", stdin) #define freopenw freopen("in.txt", "w", stdout) using namespace std; typedef long long LL; typedef unsigned long long ULL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const LL LNF = 1e17; const double inf = 1e20; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 1100 + 10; const int maxm = 1e5 + 10; const int mod = 50007; const int dr[] = {-1, 0, 1, 0}; const int dc[] = {0, 1, 0, -1}; const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline bool is_in(int r, int c) { return r > 0 && r <= n && c > 0 && c <= m; } int a[maxn], b[maxn]; int dp[maxn]; int ans; bool judge(int mid, bool ok){ ms(dp, INF); dp[0] = 0; for(int i = 0; i < m; ++i){ int x = a[i] / mid; for(int j = 1050; j >= x; --j) dp[j] = min(dp[j], dp[j - x] + a[i]); } int res = INF; for(int i = n; i <= 1050; ++i) res = min(res, dp[i]); if(ok) ans = res; return res != INF; } int main(){ while(scanf("%d %d", &n, &m) == 2 && n+m){ int l = 1, r = 0; for(int i = 0; i < m; ++i) scanf("%d", a + i), r = max(r, a[i]); while(l <= r){ int m = l + r >> 1; if(judge(m, false)) l = m + 1; else r = m - 1; } if(l == 1){ printf("0 0\n"); continue; } judge(l - 1, 1); printf("%d %d\n", l - 1, ans); } return 0; }