题意:给定 n 条二次曲线, fi(x) = aix^2 + bix + c 定义 F(x) =max{Si(x)},求 F(x) 在 0 ~ 1000 上的最小值。
析:从题目给定的曲线上进行分析,很容易知道,最后的所形成的图形一定是下凸的,而这个图形就一定有一个最小值,而下凸函数可以用三分来求解。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #include <sstream> #include <list> #include <assert.h> #include <bitset> #include <numeric> #define debug() puts("++++") #define gcd(a, b) __gcd(a, b) #define lson l,m,rt<<1 #define rson m+1,r,rt<<1|1 #define fi first #define se second #define pb push_back #define sqr(x) ((x)*(x)) #define ms(a,b) memset(a, b, sizeof a) #define sz size() #define pu push_up #define pd push_down #define cl clear() #define lowbit(x) -x&x //#define all 1,n,1 #define FOR(i,n,x) for(int i = (x); i < (n); ++i) #define freopenr freopen("in.in", "r", stdin) #define freopenw freopen("out.out", "w", stdout) using namespace std; typedef long long LL; typedef unsigned long long ULL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const LL LNF = 1e17; const double inf = 1e20; const double PI = acos(-1.0); const double eps = 1e-10; const int maxn = 10000 + 5; const int maxm = 1e6 + 2; const LL mod = 1000000007; const int dr[] = {-1, 1, 0, 0, 1, 1, -1, -1}; const int dc[] = {0, 0, 1, -1, 1, -1, 1, -1}; const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline bool is_in(int r, int c) { return r >= 0 && r < n && c >= 0 && c < m; } int a[maxn], b[maxn], c[maxn]; double F(double x){ double ans = a[0] * sqr(x) + b[0] * x + c[0]; for(int i = 1; i < n; ++i) ans = max(ans, a[i] * sqr(x) + b[i] * x + c[i]); return ans; } int main(){ int T; cin >> T; while(T--){ scanf("%d", &n); for(int i = 0; i < n; ++i) scanf("%d %d %d", a+i, b+i, c+i); double l = 0., r = 1000.; while(r - l > eps){ double m1 = l + (r-l)/3.; double m2 = r - (r-l)/3; if(F(m1) < F(m2)) r = m2; else l = m1; } printf("%.4f\n", F(l)); } return 0; }