题意:给定 n 个数,从中选出一个,或者是多个,使得选出的整数的乘积是完全平方数,求一共有多少种选法,整数的素因子不大于 500。
析:从题目素因子不超过 500,就知道要把每个数进行分解。因为结果要是完全平方数,也就是说每个素因子都得出现偶数次,对于每个数我们用一个 01 向量来表示,对于这个数相应的素因子,如果出现奇数就是 1,否则就是 0,这样就可以得到一些方程,比如举个例子。 4 个整数, 4 6 10 15 ,素因子只有 2 3 5,4 = 2 ^ 2 * 3^0 * 5^0,对于每个素数可以列出一个方程 x2 + x3 = 0 mod 2 x2 + x4 = 0 mod 2 x3 + x4 = 0 mod2,很明显答案就是这些方程的解的个数,而且这个些解都是 0 或者是 1 的组合,换句话说,答案就是这些方程 2^自 由元变量 - 1,减 1 意思是去掉全不选的情况。自由变元怎么求呢,使用高斯消元,不过这次是使用异或,比高斯消元还好写。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #include <sstream> #include <list> #include <assert.h> #include <bitset> #include <numeric> #define debug() puts("++++") #define gcd(a, b) __gcd(a, b) #define lson l,m,rt<<1 #define rson m+1,r,rt<<1|1 #define fi first #define se second #define pb push_back #define sqr(x) ((x)*(x)) #define ms(a,b) memset(a, b, sizeof a) #define sz size() #define pu push_up #define pd push_down #define cl clear() #define lowbit(x) -x&x //#define all 1,n,1 #define FOR(i,n,x) for(int i = (x); i < (n); ++i) #define freopenr freopen("in.in", "r", stdin) #define freopenw freopen("out.out", "w", stdout) using namespace std; typedef long long LL; typedef unsigned long long ULL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const LL LNF = 1e17; const double inf = 1e20; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 500 + 5; const int maxm = 1e6 + 2; const LL mod = 1000000007; const int dr[] = {-1, 1, 0, 0, 1, 1, -1, -1}; const int dc[] = {0, 0, 1, -1, 1, -1, 1, -1}; const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline bool is_in(int r, int c) { return r >= 0 && r < n && c >= 0 && c < m; } bool vis[maxn]; int prime[maxn], cnt; void init(){ for(int i = 2; i < maxn; ++i) if(!vis[i]){ prime[cnt++] = i; for(int j = i*i; j < maxn; j += i) vis[j] = 1; } } int A[maxn][maxn]; int main(){ init(); int T; cin >> T; while(T--){ scanf("%d", &n); ms(A, 0); int mmax = 0; for(int i = 0; i < n; ++i){ LL x; scanf("%lld", &x); for(int j = 0; j < cnt; ++j) while(x % prime[j] == 0){ A[j][i] ^= 1; x /= prime[j]; mmax = max(mmax, j); } } int i = 0, j = 0; while(i <= mmax && j < n){ int r = i; for(int k = i; k <= mmax; ++k) if(A[k][j]){ r = k; break; } if(A[r][j]){ if(r != i) for(int k = i; k <= n; ++k) swap(A[r][k], A[i][k]); for(int k = i+1; k <= mmax; ++k) if(A[k][j]) for(int l = i; l <= n; ++l) A[k][l] ^= A[i][l]; ++i; } ++j; } printf("%lld\n", (1LL<<n-i) - 1); } return 0; }