题意:一个细胞自动机包含 n 个格子,每个格子取值是 0 ~ m-1,给定距离,则每次操作后每个格子的值将变成到它距离不超过 d 的所有格子在操作之前的值之和取模 m 后的值,其中 i 和 j 的距离为 min{|i-1|, n-|i-j|}。给定 n,m,d,k 和自动机每个格子的初始值,求 k 次操作后的各个格子的值。
析:由于能够直接能推出公式,而且 k 比较大,很容易想到是矩阵快速幂,并且也能够写出矩阵方程。假设 d = 1
很容易得到这个矩阵,然后使用矩阵快速幂,但是复杂度是 O(n^3*logk),而且还有多组数据,会TLE的,然后考虑优化,从这个矩阵可以看出这是一个循环矩阵,也就是第 i 列可以由第 i-1 列通过向下移动一个得到,而且还有结论,那就是两个循环矩阵相乘得到的矩阵依然是循环矩阵,既然的话,我们就可以只保留第一列就可以了,因为其他列都可以由于第一列得到,由于只要算一次,那么在矩阵相乘的时候,时间复杂度就不是O(n^3) 了,而是O(n^2),然后再加上快速幂,总时间复杂度就是O(n^2*logk),可以解决这个问题。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #include <sstream> #include <list> #include <assert.h> #include <bitset> #include <numeric> #define debug() puts("++++") #define gcd(a, b) __gcd(a, b) #define lson l,m,rt<<1 #define rson m+1,r,rt<<1|1 #define fi first #define se second #define pb push_back #define sqr(x) ((x)*(x)) #define ms(a,b) memset(a, b, sizeof a) #define sz size() #define pu push_up #define pd push_down #define cl clear() #define lowbit(x) -x&x //#define all 1,n,1 #define FOR(i,n,x) for(int i = (x); i < (n); ++i) #define freopenr freopen("in.in", "r", stdin) #define freopenw freopen("out.out", "w", stdout) using namespace std; typedef long long LL; typedef unsigned long long ULL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const LL LNF = 1e17; const double inf = 1e20; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 500 + 5; const int maxm = 1e6 + 2; const LL mod = 1000000007; const int dr[] = {-1, 1, 0, 0, 1, 1, -1, -1}; const int dc[] = {0, 0, 1, -1, 1, -1, 1, -1}; const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline bool is_in(int r, int c) { return r >= 0 && r < n && c >= 0 && c < m; } struct Matrix{ int a[maxn], n; void init(){ ms(a, 0); } void toOne(){ a[0] = 1; } Matrix operator * (const Matrix &rhs){ Matrix res; res.n = n; res.init(); FOR(i, n, 0) FOR(j, n, 0) res.a[i] = (res.a[i] + (LL)a[(i-j+n)%n] * rhs.a[j]) % m; return res; } }; Matrix fast_pow(Matrix x, int n){ Matrix res; res.n = x.n; res.init(); res.toOne(); while(n){ if(n&1) res = res * x; x = x * x; n >>= 1; } return res; } int main(){ int d, k; while(scanf("%d %d %d %d", &n, &m, &d, &k) == 4){ Matrix x, y; x.init(); y.init(); x.n = y.n = n; for(int i = 0; i < n; ++i) scanf("%d", &x.a[i]); y.a[0] = 1; int cnt = 1; while(cnt <= d) y.a[cnt] = 1, ++cnt; cnt = 1; while(cnt <= d) y.a[n-cnt] = 1, ++cnt; Matrix ans = x * fast_pow(y, k); for(int i = 0; i < n; ++i) printf("%d%c", ans.a[i], " \n"[i+1==n]); } return 0; }