题意:给定 d , n , m (1<=d<=15,1<=n<=2^31-1,1<=m<=46340)。a1 , a2 ..... ad。f(1), f(2) ..... f(d),求 f(n) = a1*f(n-1) + a2*f(n-2) +....+ ad*f(n-d),计算f(n) % m。
析:很明显的矩阵快速幂,构造矩阵,
,然后后面的就很简单了。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #include <sstream> #include <list> #include <assert.h> #include <bitset> #include <numeric> #define debug() puts("++++") #define gcd(a, b) __gcd(a, b) #define lson l,m,rt<<1 #define rson m+1,r,rt<<1|1 #define fi first #define se second #define pb push_back #define sqr(x) ((x)*(x)) #define ms(a,b) memset(a, b, sizeof a) #define sz size() #define pu push_up #define pd push_down #define cl clear() #define lowbit(x) -x&x //#define all 1,n,1 #define FOR(i,n,x) for(int i = (x); i < (n); ++i) #define freopenr freopen("in.in", "r", stdin) #define freopenw freopen("out.out", "w", stdout) using namespace std; typedef long long LL; typedef unsigned long long ULL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const LL LNF = 1e17; const double inf = 1e20; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 20 + 10; const int maxm = 1e6 + 2; const LL mod = 1000000007; const int dr[] = {-1, 1, 0, 0, 1, 1, -1, -1}; const int dc[] = {0, 0, 1, -1, 1, -1, 1, -1}; const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline bool is_in(int r, int c) { return r >= 0 && r < n && c >= 0 && c < m; } struct Matrix{ int a[15][15], n; void init(){ ms(a, 0); } void toOne(){ FOR(i, n, 0) a[i][i] = 1; } Matrix operator * (const Matrix &rhs){ Matrix res; res.n = n; res.init(); FOR(i, n, 0) FOR(j, n, 0) FOR(k, n, 0) res.a[i][j] = (res.a[i][j] + (LL)a[i][k] * rhs.a[k][j]) % m; return res; } }; Matrix fast_pow(Matrix x, int n){ Matrix res; res.n = x.n; res.init(); res.toOne(); while(n){ if(n&1) res = res * x; x = x * x; n >>= 1; } return res; } int main(){ int d; while(scanf("%d %d %d", &d, &n, &m) == 3 && n+m+d){ Matrix x, y; x.init(); y.init(); x.n = y.n = d; for(int i = 0; i < d; ++i){ scanf("%d", &y.a[i][0]); y.a[i][0] %= m; } for(int i = d-1; i >= 0; --i){ scanf("%d", &x.a[0][i]); x.a[0][i] %= m; } if(n <= d){ printf("%d\n", x.a[0][d-n]); continue; } for(int i = 0; i + 1 < d; ++i) y.a[i][i+1] = 1; Matrix ans = x * fast_pow(y, n - d); printf("%d\n", ans.a[0][0]); } return 0; }